首页> 外文期刊>Journal of materials science >Microwave-assisted synthesis of pillared Ni-based metal-organic framework and its derived hierarchical NiO nanoparticles for supercapacitors
【24h】

Microwave-assisted synthesis of pillared Ni-based metal-organic framework and its derived hierarchical NiO nanoparticles for supercapacitors

机译:微波辅助合成柱状镍基金属有机骨架及其衍生的用于超级电容器的分层NiO纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Metal–organic frameworks have emerged as promising precursors and templates for constructing various electrode materials. However, most of MOFs are usually synthesized by time-consuming solvothermal method, which reduces the efficiency of MOFs engaged strategy of fabricating nanostructured electrode materials. In this work, a pillared Ni-MOF (Ni(bdc)(ted)~(0.5)) has been successfully prepared by a facile microwave-assisted method in 30 min. Hierarchical NiO nanoparticles are obtained after annealing the Ni-MOF at various temperatures. When acting as electrode material for supercapacitor, the NiO-350 delivers higher specific capacitance (248.28 F g_(−1)at 0.5 A g_(−1)), rate capacitance (61.7% at 10 A g_(−1)) and cycling stability (74.3% over 2000 cycles) than those of Ni-400 and Ni-450. The large surface area can provide substantial electroactive sites, and the hierarchical porous structure is beneficial for transport of ions and more electrolyte ions can penetrate into the inner of surface of electrode material. Besides, the nanosized NiO can increase the conductivity of the electrode. All these factors contribute to the superior electrochemical performance of Ni-350. Since microwave-assisted synthesis of MOFs is rapid and facile, more nanostructured electrode materials, such as carbons and metal sulfides can be synthesized by this method followed by appropriate treatment.
机译:金属有机框架已成为有前途的前驱体和用于构建各种电极材料的模板。然而,大多数MOF通常是通过费时的溶剂热法合成的,这降低了MOF参与制备纳米结构电极材料的策略的效率。在这项工作中,通过简便的微波辅助方法在30分钟内成功制备了带柱状的Ni-MOF(Ni(bdc)(ted)〜(0.5))。在各种温度下对Ni-MOF进行退火后,可获得分层NiO纳米颗粒。当用作超级电容器的电极材料时,NiO-350可提供更高的比电容(在0.5A g _(-1)时为248.28F g _(-1)),额定电容(在10A g _(-1)时为61.7%)稳定性(在2000次循环中为74.3%)比Ni-400和Ni-450更高。大的表面积可以提供大量的电活性位点,并且分层的多孔结构有利于离子的传输,并且更多的电解质离子可以渗透到电极材料的表面内部。此外,纳米NiO可以增加电极的电导率。所有这些因素有助于Ni-350优异的电化学性能。由于MOF的微波辅助合成是快速且容易的,因此可以通过此方法并进行适当的处​​理来合成更多的纳米结构电极材料,例如碳和金属硫化物。

著录项

  • 来源
    《Journal of materials science》 |2018年第17期|14697-14704|共8页
  • 作者单位

    School of Materials Science and Chemical Engineering, Ningbo University;

    School of Materials Science and Chemical Engineering, Ningbo University,State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University;

    State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University;

    School of Materials Science and Chemical Engineering, Ningbo University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号