...
首页> 外文期刊>Journal of Materials Research >Self-heating of silicon micro wires: Crystallization and thermoelectric effects
【24h】

Self-heating of silicon micro wires: Crystallization and thermoelectric effects

机译:硅微线的自热:结晶和热电效应

获取原文
获取原文并翻译 | 示例

摘要

We describe experiments on self-heating and melting of nanocrystalline silicon microwires using single high-amplitude microsecond voltage pulses, which result in growth of large single-crystal domains upon resolidification. Extremely high current densities (>20 MA/cm2) and consequent high temperatures (1700 K) and temperature gradients (1 Km) along the microwires give rise to strong thermoelectric effects. The thermoelectric effects are characterized through capture and analysis of light emission from the self-heated wires biased with lower magnitude direct current/ alternating current voltages. The hottest spot on the wires consistently appears closer to the lower potential end for n-type microwires and to the higher potential end for p-type microwires. The experimental light emission profiles are used to verify the mathematical models and material parameters used for the simulations. Good agreement between experimental and simulated profiles indicates that these models can be used to predict and design optimum geometry and bias conditions for current-induced crystallization of microstructures.
机译:我们描述了使用单个高振幅微秒电压脉冲对纳米晶硅微线进行自加热和熔化的实验,这些脉冲在重新凝固时会导致大型单晶畴的生长。沿微线的极高电流密度(> 20 MA / cm2)以及随之而来的高温(1700 K)和温度梯度(1 K / nm)产生了强烈的热电效应。通过捕获和分析来自以较低幅度的直流电/交流电电压偏置的自热线的发光来表征热电效应。导线上最热的点始终显示为更靠近n型微线的较低电势端和p型微线的较高电势端。实验的发光轮廓用于验证用于仿真的数学模型和材料参数。实验和模拟轮廓之间的良好一致性表明,这些模型可用于预测和设计电流诱导的微结构结晶的最佳几何形状和偏置条件。

著录项

  • 来源
    《Journal of Materials Research 》 |2011年第9期| p.1061-1071| 共11页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

    Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号