首页> 外文期刊>Journal of Materials Research >Microstructure-based modeling of the impact response of a biomedical niobium-zirconium alloy
【24h】

Microstructure-based modeling of the impact response of a biomedical niobium-zirconium alloy

机译:基于微观结构的生物医学铌锆合金冲击响应建模

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents a new multiscale modeling approach proposed to predict the impact response of a biomedical niobium-zirconium alloy by incorporating both geometric and microstructural aspects. Specifically, the roles of both anisotropy and geometry-based distribution of stresses and strains upon loading were successfully taken into account by incorporating a proper multiaxial material flow rule obtained from crystal plasticity simulations into the finite element (FE) analysis. The simulation results demonstrate that the current approach, which defines a hardening rule based on the location-dependent equivalent stresses and strains, yields more reliable results as compared with the classical FE approach, where the hardening rule is based on the experimental uniaxial deformation response of the material. This emphasizes the need for proper coupling of crystal plasticity and FE analysis for the sake of reliable predictions, and the approach presented herein constitutes an efficient guideline for the design process of dental and orthopedic implants that are subject to impact loading in service.
机译:本文提出了一种新的多尺度建模方法,该方法旨在通过结合几何和微观结构方面来预测生物医学铌锆合金的冲击响应。具体而言,通过将从晶体可塑性模拟获得的适当的多轴材料流动规律纳入有限元(FE)分析,成功地考虑了各向异性以及载荷时应力和应变的基于几何分布的作用。仿真结果表明,与经典有限元方法(基于硬化实验基于实验的单轴变形响应)的经典有限元方法相比,当前方法基于位置相关的等效应力和应变来定义硬化规则,其结果更为可靠。材料。为了强调可靠的预测,这强调了晶体可塑性和有限元分析的正确耦合的需要,本文介绍的方法构成了在使用中承受冲击载荷的牙科和整形外科植入物设计过程的有效指南。

著录项

  • 来源
    《Journal of Materials Research》 |2014年第10期|1123-1134|共12页
  • 作者单位

    Advanced Materials Group (AMG), Department of Mechanical Engineering, Kog University, Sariyer, Istanbul 34450, Turkey;

    Advanced Materials Group (AMG), Department of Mechanical Engineering, Kog University, Sariyer, Istanbul 34450, Turkey;

    Advanced Materials Group (AMG), Department of Mechanical Engineering, Kog University, Sariyer, Istanbul 34450, Turkey;

    Advanced Materials Group (AMG), Department of Mechanical Engineering, Kog University, Sariyer, Istanbul 34450, Turkey;

    Advanced Materials Group (AMG), Department of Mechanical Engineering, Kog University, Sariyer, Istanbul 34450, Turkey;

    Institut fuer Werkstoffkunde (Materials Science), Leibniz Universitaet Hannover, Garbsen 30823, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号