首页> 外文期刊>Journal of Materials Research >Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel
【24h】

Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel

机译:低碳RAFM钢热变形行为的组织演变与本构模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

The constitutive equation was established based on the consideration of strain compensation to describe the hot deformation behavior of low carbon reduced activation ferritic/martensitic (RAFM) steels at the temperatures of 850-1050 °C and the strain rates of 0.01-10 s~(-1). The result indicates that the flow stress is increased with the increase of strain rate but decreased with increase of deformation temperature. During the hot deformation process, the increase of temperature is beneficial to attain the complete dynamic recrystallization (DRX). However, excessively high temperature leads to grow up of dynamic recrystallized grain. Higher strain rate leads to finer recrystallized grains. The material constants (a, n, A) and deformation activation energy (Q) are calculated by the regression analysis. The increase of strain caused the decrease of Q, indicating the DRX occurred more easily. In addition, the developed constitutive equation could accurately predict the hot deformation behavior of the low carbon RAFM steel.
机译:基于应变补偿建立本构方程,以描述低碳还原活化铁素体/马氏体(RAFM)钢在850-1050°C的温度和0.01-10 s〜(应变率)下的热变形行为。 -1)。结果表明,流变应力随应变率的增加而增大,而随变形温度的升高而减小。在热变形过程中,温度的升高有利于获得完全的动态再结晶(DRX)。但是,过高的温度会导致动态再结晶晶粒长大。较高的应变速率导致较细的重结晶晶粒。通过回归分析计算出材料常数(a,n,A)和变形激活能(Q)。应变的增加导致了Q的减小,表明DRX的产生更加容易。此外,建立的本构方程可以准确地预测低碳RAFM钢的热变形行为。

著录项

  • 来源
    《Journal of Materials Research》 |2017年第7期|1376-1385|共10页
  • 作者单位

    State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300350, People's Republic of China;

    State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300350, People's Republic of China;

    State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300350, People's Republic of China;

    State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300350, People's Republic of China;

    State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300350, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号