首页> 外文期刊>Journal of Materials Research >Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism
【24h】

Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism

机译:对双界偏移源行为的定量见解表明了一种新的错位源机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Pop-in statistics from nanoindentation with spherical indenters are used to determine the stress required to activate dislocation sources in twin boundaries (TBs) in copper and its alloys. The TB source activation stress is smaller than that needed for bulk single crystals, irrespective of the indenter size, dislocation density and stacking fault energy. Because an array of pre-existing Frank partial dislocations is present at a TB, we propose that dislocation emission from the TB occurs by the Frank partials splitting into Shockley partials moving along the TB plane and perfect lattice dislocations, both of which are mobile. The proposed mechanism is supported by recent high resolution transmission electron microscopy images in deformed nanotwinned (NT) metals and may help to explain some of the superior properties of nanotwinned metals (e.g. high strength and good ductility), as well as the process of detwinning by the collective formation and motion of Shockley partial dislocations along TBs.
机译:来自球形压头的纳米内狭窄的弹出统计学用于确定在铜及其合金中激活双界(TBS)中的位错源所需的应力。 TB源激活应力小于散装单晶所需的TB,而不管压痕大小,位错密度和堆叠故障能量如何。因为在结核病时存在一系列预先存在的弗兰克部分脱位,所以我们提出从TB的位错发射发生在沿着Tb平面和完美的晶格位错移动到震撼偏的部分,两者都是移动的。所提出的机制由近期高分辨率透射电子显微镜图像中变形纳米型(NT)金属,并且可以有助于解释纳米丝金属(例如高强度和良好延展性)的一些优异特性,以及纠正的过程沿TBS的震撼部分脱位的集体形成和运动。

著录项

  • 来源
    《Journal of Materials Research》 |2021年第10期|2037-2046|共10页
  • 作者单位

    Max-Planck-Institut Fuer Eisenforschung GmbH 40235 Duesseldorf Germany Institute for Applied Materials (IAM) Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany;

    Texas A&M University College Station TX 77843 USA;

    Max-Planck-Institut Fuer Eisenforschung GmbH 40235 Duesseldorf Germany Institute for Applied Materials (IAM) Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号