...
首页> 外文期刊>Journal of Manufacturing Processes >An automated inverse method to calibrate thermal finite element models for numerical welding applications
【24h】

An automated inverse method to calibrate thermal finite element models for numerical welding applications

机译:一种自动逆方法,用于校准数值焊接应用中的热有限元模型

获取原文
获取原文并翻译 | 示例

摘要

Numerical modelling of welding processes is often completed using a sequentially coupled thermo-mechanical Finite Element (FE) analysis to predict both the thermal and mechanical effects induced by the process. The accuracy of the predicted residual stresses and distortions are highly dependent upon an accurate representation of the thermal field. Utilising this approach, the physics of the melt pool are replaced with a heat source model which represents the heat flux distribution of the process. Many heat source models exist; however, the parameters which define the geometrical distribution have to be calibrated using experimental data. Currently the most common method involves trial and error, until the predicted thermal history and melt pool geometry accurately represent the experimental data. Although this is a simple approach, it is often time consuming and inherently inaccurate. Therefore, this study presents an automated calibration process, which determines the optimum element size for the FE mesh and then refines the parameters of the heat source model using an inverse approach. The proposed procedure was implemented for laser beam welding, operating in both the conductive and keyhole regimes. To ensure that both the thermal history data and melt pool geometry were predicted with accuracy, a multi-objective optimisation was required. The proposed methodology was experimentally validated through welding nine IN718 samples using a Nd:YAG laser heat source. A good correlation between the experimental and numerical data sets were apparent. With regards to the predicted melt pool geometry, the maximum error for the width, depth and area of the melt pool was 8.4%, 4.0% and 11.0% respectively and the minimum error was 1.5%, 0.3% and 0.3% respectively. For the temperature profiles, the maximum and minimum errors for the peak temperature were 8.6% and 1.2%. Overall, the proposed calibration procedure allows automation of an important step in the thermal modelling of welding process, allowing a more efficient industrial use of the sequentially coupled FE approach.
机译:焊接过程的数值建模通常使用顺序耦合的热机械有限元(FE)分析来完成,以预测该过程引起的热效应和机械效应。预测的残余应力和变形的精度高度依赖于热场的精确表示。利用这种方法,熔池的物理被热源模型代替,该热源模型表示过程的热通量分布。存在许多热源模型。但是,定义几何分布的参数必须使用实验数据进行校准。当前,最常见的方法是反复试验,直到预测的热历史和熔池几何形状准确地表示实验数据为止。尽管这是一种简单的方法,但它通常很耗时且本质上不准确。因此,本研究提出了一种自动校准过程,该过程确定了有限元网格的最佳元素尺寸,然后使用逆方法来优化热源模型的参数。拟议的程序是针对激光束焊接实施的,可在导电和锁孔方式下使用。为了确保准确预测热历史数据和熔池几何形状,需要进行多目标优化。通过使用Nd:YAG激光热源焊接九个IN718样品,对所提出的方法进行了实验验证。实验数据集和数值数据集之间的良好相关性显而易见。关于预测的熔池几何形状,熔池的宽度,深度和面积的最大误差分别为8.4%,4.0%和11.0%,最小误差分别为1.5%,0.3%和0.3%。对于温度曲线,峰值温度的最大和最小误差为8.6%和1.2%。总体而言,建议的校准程序可以使焊接过程热建模中的重要步骤实现自动化,从而可以更有效地工业应用顺序耦合有限元方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号