...
首页> 外文期刊>Journal of magnetism and magnetic materials >A graphite based STT-RAM cell with reduction in switching current
【24h】

A graphite based STT-RAM cell with reduction in switching current

机译:减少开关电流的石墨基STT-RAM单元

获取原文
获取原文并翻译 | 示例
           

摘要

Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).
机译:自旋转移扭矩随机存取存储器(STT-RAM)由于其不易挥发,快速访问时间,高密度,良好的可伸缩性,高耐久性和相对较低的功耗而成为“通用存储器”的重要候选者。但是,低写入速度和大写入电流的问题是STT-RAM设计中存在的重要挑战,并且需要在它们与数据保留时间之间进行权衡。在这项研究中,提出了一种新颖的STT-RAM单元结构,该结构使用了基于石墨的完美磁性隧道结(MTJ)。首先,将结构的横截面选择为45 nm和180 nm尺寸的椭圆,并使用六层石墨作为隧道势垒。通过使具有短脉冲宽度的横向电流(在施加STT电流之前且独立于此)通过隧道势垒的四个中间石墨烯层,可使开关电流的幅度减小27%(快速开关时间为2 ns)或在不减少数据保留时间的情况下将其脉冲宽度减少58%。最后,评估了技术缩减对所提出的结构的影响。通过使足够的电流(脉冲宽度为0.1 ns的100μA)通过隧道势垒,可以在90和22 nm的单元宽度上分别降低31.6%和9%的开关电流。使用面向对象的微电磁框架(OOMMF)进行仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号