...
首页> 外文期刊>Journal of Lightwave Technology >Progress in Epitaxial Growth and Performance of Quantum Dot and Quantum Wire Lasers
【24h】

Progress in Epitaxial Growth and Performance of Quantum Dot and Quantum Wire Lasers

机译:量子点和量子线激光器的外延生长及其性能研究进展

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report on interplay of epitaxial growth phenomena and device performance in quantum dot (QD) and quantum wire (QWW) lasers based on self-organized nanostructutres. InAs QDs are the most explored model system for basic understanding of “near-ideal” QD devices. Vertically-coupled growth of QDs and activated phase separation allow ultimate QD wavefunction engineering enabling GaAs lasers beyond 1400 nm and polarization-insensitive optical amplification. A feasibility of QD semiconductor optical amplifiers at terabit frequencies using InAs QDs is manifested at 1300 and 1500nm. 1250–1300nm QD GaAs edge emitters and VCSELs operate beyond 10Gb/s with ultimate temperature robustness. Furthermore, temperature-insensitive operation without current or modulation voltage adjustment at $>$20 Gb/s is demonstrated up to ${sim} hbox{90}, ^{circ}$C. Light-emitting devices based on InGaN-QDs cover ultraviolet (UV) and visible blue-green spectral ranges. In these applications, InN-rich nanodomains prevent diffusion of nonequilibrium carries towards crystal defects and result in advanced degradation robustness of the devices. All the features characteristic to QDs are unambiguously confirmed for InGaN structures. For the red spectral range InGaAlP lasers are used. Growth on misoriented surfaces, characteristic to these devices, leads to nano-periodically-step-bunched epitaxial surfaces resulting in two principal effects: 1) step-bunch-assisted alloy phase separation, leading to a spontaneous formation of ordered natural superlattices; 2)formation of quantum wire-like structures in the active region of the device. A high degree of polarization is revealed in the luminescence recorded from the top surface of the structures, in agreement with the QWW nature of the gain medium. QD and QWW lasers are remaining at the frontier of the modern optoelectroni-cs penetrating into the mainstream applications in key industries.
机译:我们报告了基于自组织纳米结构的量子点(QD)和量子线(QWW)激光器中外延生长现象与器件性能之间的相互作用。 InAs QD是对“近乎理想”的QD设备的基本了解最深入的模型系统。量子点的垂直耦合生长和激活的相分离使最终的量子点波函数工程得以实现,从而使1400 nm以上的GaAs激光器和对偏振不敏感的光放大。使用InAs QD在太比特频率下QD半导体光放大器的可行性体现在1300和1500nm。 1250–1300nm QD GaAs边缘发射器和VCSEL的运行速度超过10Gb / s,具有出色的温度稳定性。此外,在$ {sim} hbox {90},^ {circ} $ 范围内,证明了对温度不敏感的操作,无需以$> $ 20 Gb / s的电流或调制电压进行调整。 C。基于InGaN-QD的发光器件覆盖紫外线(UV)和可见的蓝绿色光谱范围。在这些应用中,富含InN的纳米域可防止非平衡扩散扩散至晶体缺陷,并导致器件的高级降级稳健性。对于InGaN结构,所有QD的特征都得到了明确的确认。对于红色光谱范围,使用InGaAlP激光器。这些器件所特有的取向不正确的表面上的生长会导致纳米周期分步束缚的外延表面,从而产生两个主要效果:1)分步束缚辅助合金相分离,导致自然形成有序的自然超晶格; 2)在器件的有源区中形成量子线状结构。与增益介质的QWW性质一致,从结构的顶面记录的发光显示出高度的偏振。 QD和QWW激光器仍然处于现代光电技术的前沿,并渗透到关键行业的主流应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号