...
首页> 外文期刊>Journal of Integrative Neuroscience >'MEMORY BYTES' — MOLECULAR MATCH FOR CaMKII PHOSPHORYLATION ENCODING OF MICROTUBULE LATTICES
【24h】

'MEMORY BYTES' — MOLECULAR MATCH FOR CaMKII PHOSPHORYLATION ENCODING OF MICROTUBULE LATTICES

机译:“内存字节” —微管格的CaMKII磷酸化编码的分子匹配

获取原文
获取原文并翻译 | 示例

摘要

Learning, memory and long-term potentiation (LTP) are supported by factors including post-synaptic calcium ion flux activating and transforming the hexagonal calcium-calmodulin kinase II (CaMKII) holoenzyme. Upon calcium-induced activation, up to six kinase domains extend upward, and up to six kinase domains extend downward from the CaMKII association domain, the fully activated holoenzyme resembling a robotic insect 20 nanometers in length. Each extended kinase domain can be phosphorylated, and able to phosphorylate other proteins, thus potentially further encoding synaptic information at intraneuronal molecular sites for memory storage, processing and distribution. Candidate sites for phosphorylation-encoded molecular memory include microtubules, cylindrical lattice polymers of the protein tubulin. Using molecular modeling, we find spatial dimensions and geometry of the six extended CaMKII kinase domains can precisely match those of microtubule hexagonal lattice neighborhoods (both A- and B-lattices), and show two feasible phosphorylation mechanisms. In one, phosphorylation sites (e.g., valine 208) on a CaMKII extended kinase domain interact with serine 444 on a C-terminal "tail" of tubulin. In the second, the CaMKII kinase domain unfurls, enabling phosphorylation sites to contact threonine and serine sites on the tubulin surface. We suggest sets of six CaMKII kinase domains phosphorylate hexagonal microtubule lattice neighborhoods collectively, e.g., conveying synaptic information as ordered arrays of six "bits", and thus a "byte", with (minimally) 26 (64) possible bit states per CaMKII-microtubule interaction. We model two levels of interaction between CaMKII and microtubules, suggesting a testable framework for molecular memory encoding.
机译:学习,记忆和长期增强(LTP)受到各种因素的支持,这些因素包括突触后钙离子通量激活和转化六角形钙钙调蛋白激酶II(CaMKII)全酶。在钙诱导的激活后,最多六个激酶结构域从CaMKII缔合结构域向上延伸,最多六个激酶结构域向下延伸,完全活化的全酶类似于20纳米长的昆虫。每个扩展的激酶结构域都可以被磷酸化,并且能够磷酸化其他蛋白质,从而潜在地进一步在神经元内分子位点编码突触信息以进行记忆存储,处理和分配。磷酸化编码的分子记忆的候选位点包括微管,蛋白质微管蛋白的圆柱形晶格聚合物。使用分子建模,我们发现六个扩展的CaMKII激酶结构域的空间尺寸和几何形状可以与微管六角形晶格邻域(A和B晶格)精确匹配,并显示出两种可行的磷酸化机制。在一种中,CaMKII延伸的激酶结构域上的磷酸化位点(例如缬氨酸208)与微管蛋白的C末端“尾巴”上的丝氨酸444相互作用。第二,CaMKII激酶结构域展开,使磷酸化位点接触微管蛋白表面的苏氨酸和丝氨酸位点。我们建议六个CaMKII激酶结构域的集合共同磷酸化六角形微管格子邻域,例如,以六个“位”(因此为一个“字节”)的有序阵列形式传递突触信息,每个CaMKII-(至少)具有26(64)个可能的位状态微管相互作用。我们模型化CaMKII和微管之间的相互作用的两个水平,表明分子存储器编码的可测试框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号