...
首页> 外文期刊>Journal of inorganic and organometallic polymers and materials >Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite
【24h】

Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite

机译:氧化石墨烯/ Mn2O3:Co3O4纳米复合材料的电化学超电容性能

获取原文
获取原文并翻译 | 示例

摘要

Graphene-based composite material was prepared and its electrochemical supercapacitive properties were investigated. The composite material comprises of mixed manganese oxide (Mn2O3) and cobalt oxide (Co3O4) crystal distributed on the reduced graphene oxide (RGO) matrix. Structure and morphology of the composite was studied by X-ray diffractometry, high resolution transmission electron microscopy and scanning electron microscopy. The surface functional groups and chemical composition were confirmed by Fourier transform infrared spectroscopy, Raman scattering spectroscopy and X-ray photoelectron spectroscopy. Thermal stability was investigated by thermo gravimetric analysis. Electrochemical supercapacitive performance of the composite was investigated by cyclic voltammetry (CV) and chronopotentiometry. CV and chronopotentiometry results suggested that electrochemical performance of the composite material is better than RGO and mixed Mn2O3 and Co3O4. Specific capacitance of composite was obtained 210 F g(-1) at scan rate of 5 mV s(-1) and 184 F g(-1) at current density of 2 A g(-1), respectively. Moreover, the composite showed high cyclic stability with the retention of about 87% capacitance after 1000 charge/discharge cycles. These results suggest the importance and potential of graphene based composite in supercapacitor application.
机译:制备了石墨烯基复合材料,并研究了其电化学超电容性能。该复合材料包括混合锰氧化物(Mn2O3)和分布在还原氧化石墨烯(RGO)基质上的氧化钴(Co3O4)晶体。通过X射线衍射,高分辨率透射电子显微镜和扫描电子显微镜研究了复合材料的结构和形貌。通过傅立叶变换红外光谱,拉曼散射光谱和X射线光电子能谱确认表面官能团和化学组成。通过热重量分析研究热稳定性。通过循环伏安法(CV)和计时电位法研究了复合材料的电化学超电容性能。 CV和计时电位法结果表明,复合材料的电化学性能优于RGO和Mn2O3和Co3O4的混合材料。在2 m g(-1)的电流密度下,分别以5 mV s(-1)和184 F g(-1)的扫描速率获得210 F g(-1)的复合材料的比电容。此外,该复合材料表现出高的循环稳定性,在1000次充/放电循环后保留了约87%的电容。这些结果表明石墨烯基复合材料在超级电容器应用中的重要性和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号