首页> 外文期刊>Journal of Heat Transfer >Unsteady Heat Transfer Analysis of an Impinging Jet
【24h】

Unsteady Heat Transfer Analysis of an Impinging Jet

机译:射流的非稳态传热分析

获取原文
获取原文并翻译 | 示例
       

摘要

Unsteady heat transfer caused by a confined impinging jet is studied using direct numerical simulation (DNS). The time-dependent compressible Navier-Stokes equations are solved using high-order numerical schemes together with high-fidelity numerical boundary conditions. A sixth-order compact finite difference scheme is employed for spatial discretization while a third-order explicit Runge-Kutta method is adopted for temporal integration. Extensive spatial and temporal resolution tests have been performed to ensure accurate numerical solutions. The simulations cover several Reynolds numbers and two nozzle-to-plate distances. The instantaneous flow fields and heat transfer distributions are found to be highly unsteady and oscillatory in nature, even at relatively low Reynolds numbers. The fluctuation of the stagnation or impingement Nusselt number, for example, can be as high as 20 percent of the time-mean value. The correlation between the vortex structures and the unsteady heat transfer is carefully examined. It is shown that the fluctuations in the stagnation heat transfer are mainly caused by impingement of the primary vortices originating from the jet nozzle exit. The quasi-periodic nature of the generation of the primary vortices due to the Kelvin-Helmholtz instability is behind the nearly periodic fluctuation in impingement heat transfer, although more chaotic and nonlinear fluctuations are observed with increasing Reynolds numbers. The Nusselt number distribution away from the impingement point, on the other hand, is influenced by the secondary vortices which arise due to the interaction between the primary vortices and the wall jets. The unsteady vortex separation from the wall in the higher Reynolds number cases leads to a local minimum and a secondary maximum in the Nusselt number distribution. These are due to the changes in the thermal layer thickness accompanying the unsteady flow structures.
机译:使用直接数值模拟(DNS)研究了受限射流引起的不稳定传热。时变可压缩的Navier-Stokes方程使用高阶数值格式和高保真数值边界条件进行求解。空间离散化采用六阶紧致有限差分方案,而时间积分采用三阶显式Runge-Kutta方法。为了确保精确的数值解,已经进行了广泛的空间和时间分辨率测试。模拟涵盖了多个雷诺数和两个喷嘴到印版的距离。发现即使在相对较低的雷诺数下,瞬时流场和传热分布本质上也是高度不稳定和振荡的。例如,停滞或碰撞努塞尔特数的波动可能高达时间平均值的20%。仔细研究了涡旋结构与不稳定传热之间的相关性。结果表明,停滞传热的波动主要是由来自喷嘴出口的一次涡流的撞击引起的。尽管随着雷诺数的增加观察到了更多的混沌和非线性波动,但是由于开尔文-亥姆霍兹不稳定性而产生的初级涡旋的准周期性质是冲击传热中近乎周期性的波动背后的原因。另一方面,远离撞击点的努塞尔数分布受次级涡流的影响,次级涡流是由于初级涡流和壁射流之间的相互作用而产生的。在雷诺数较高的情况下,涡旋与壁的不稳定分离会导致Nusselt数分布中的局部最小值和次要最大值。这是由于伴随不稳定流动结构的热层厚度的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号