首页> 外文期刊>Journal of Heat Transfer >Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer
【24h】

Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer

机译:可压缩微尺度射流冲击传热的模拟

获取原文
获取原文并翻译 | 示例
       

摘要

A computational study is presented of the heat transfer performance of a micro-scale, axisymmetric, confined jet impinging on aflat surface with an embedded uniform heat flux disk. The jet flow occurs at large, subsonic Mach numbers (0.2 to 0.8) and low Reynolds numbers (419 to 1782) at two impingement distances. The flow is characterized by a Knudsen number of 0.01, based on the viscous boundary layer thickness, which is large enough to warrant consideration of slip-flow boundary conditions along the impingement surface. The effects of Mach number, compressibility, and slip-flow on heat transfer are presented. The local Nusselt number distributions are shown along with the velocity, pressure, density and temperature fields near the impingement surface. Results show that the wall temperature decreases with increasing Mach number, M, exhibiting a minimum local value at r/R =1.6 for the highest M. The slip velocity also increases with M, showing peak values near r/R =1.4 for all M. The resulting Nusselt number increases with increasing M, and local maxima are observed near r/R =1.20, rather than at the centerline. In general, compressibility improves heat transfer due to increased fluid density near the impinging surface. The inclusion of slip-velocity and the accompanying wall temperature jump increases the predicted rate of heat transfer by as much as 8-10% for M between 0.4 and 0.8.
机译:进行了计算研究,研究了微型,轴对称,受限射流在嵌入式均匀热通量盘上撞击在平坦表面上的传热性能。射流在两个撞击距离处以较大的亚音速马赫数(0.2至0.8)和较低的雷诺数(419至1782)发生。基于粘性边界层厚度,流的特征在于克努森数为0.01,该努氏数大到足以保证考虑沿冲击表面的滑流边界条件。提出了马赫数,可压缩性和滑流对传热的影响。显示了局部Nusselt数分布以及撞击表面附近的速度,压力,密度和温度场。结果表明,壁温随马赫数M的增加而降低,对于最高的M,在r / R = 1.6处显示最小局部值。滑移速度也随M的增加而显示,所有M的峰值都在r / R = 1.4附近最终的努塞尔特数随着M的增加而增加,并且在r / R = 1.20附近而不是在中心线处观察到局部最大值。通常,由于撞击表面附近的流体密度增加,可压缩性改善了热传递。对于0.4至0.8之间的M,包括滑移速度和随之而来的壁温跳跃,可使传热的预测速率提高8-10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号