首页> 外文期刊>Journal of Heat Transfer >Flow Boiling In Minichannels Under Normal, Hyper-, And Microgravity: Local Heat Transfer Analysis Using Inverse Methods
【24h】

Flow Boiling In Minichannels Under Normal, Hyper-, And Microgravity: Local Heat Transfer Analysis Using Inverse Methods

机译:法向,超重力和微重力作用下微通道中的流动沸腾:使用逆方法的局部传热分析

获取原文
获取原文并翻译 | 示例
       

摘要

Boiling in microchannels is a very efficient mode of heat transfer since high heat and mass transfer coefficients are achieved. Here, the objective is to provide basic knowledge on the systems of biphasic cooling in mini- and microchannels during hyper- and micro-gravity. The experimental activities are performed in the frame of the MAP Boiling project founded by ESA. Analysis using inverse methods allows us to estimate local flow boiling heat transfers in the minichannels. To observe the influence of gravity level on the fluid flow and to take data measurements, an experimental setup is designed with two identical channels: one for the visualization and the other one for the data acquisition. These two devices enable us to study the influence of gravity on the temperature and pressure measurements. The two minichannels are modeled as a rectangular rod made up of three materials: a layer of polycarbonate (λ = 0.2 W m~(-1) K~(-1)) used as an insulator, a cement rod (λ=0.83 W m~(-1) K~(-1)) instrumented with 21 K-type thermocouples, and in the middle a layer of Inconel~R (λ - 10.8 W m~(-1) K~(-1)) in which the minichannel is engraved. Pressure and temperature measurements are carried out simultaneously at various levels of the minichannel. Above the channel, we have a set of temperature and pressure gauges and inside the cement rods, five heating wires provide a power of 11 W. The K-type thermocouple sensors enable us to acquire the temperature in various locations (x, y, and z) of the device. With these temperatures and the knowledge of the boundary conditions, we are able to solve the problem using inverse methods and obtain local heat fluxes and local surface temperatures on several locations. The experiments are conducted with HFE-7100 as this fluid has a low boiling temperature at the cabin pressure on Board A300. We applied for each experiment a constant heat flux (Qw = 33 kW m~(-2)) for the PF52 campaigns (Parabolic Flights). The mass flow rate varies in the range of 1
机译:微通道中的沸腾是一种非常有效的传热方式,因为可以实现高的传热系数和传质系数。在此,目的是提供有关超重力和微重力期间微通道和微通道中的双相冷却系统的基础知识。实验活动是在ESA建立的MAP沸腾项目的框架中进行的。使用逆方法的分析使我们能够估计微通道中的局部流动沸腾传热。为了观察重力对流体流动的影响并进行数据测量,设计了一个实验装置,该装置具有两个相同的通道:一个用于可视化,另一个用于数据采集。这两个设备使我们能够研究重力对温度和压力测量的影响。将两个微型通道建模为由三种材料组成的矩形棒:用作绝缘体的一层聚碳酸酯(λ= 0.2 W m〜(-1)K〜(-1)),水泥棒(λ= 0.83 W m〜(-1)K〜(-1))装有21个K型热电偶,中间有一层Inconel〜R(λ-10.8 W m〜(-1)K〜(-1))。刻有小通道。在微型通道的各个级别上同时进行压力和温度测量。在通道上方,我们有一组温度和压力计,在水泥棒内,五根加热丝提供11 W的功率。K型热电偶传感器使我们能够获取各个位置(x,y和z)的设备。有了这些温度并了解了边界条件,我们就能使用逆方法解决问题,并在多个位置获得局部热通量和局部表面温度。使用HFE-7100进行实验,因为该流体在A300板上的机舱压力下具有较低的沸腾温度。对于每个实验,我们为PF52运动(抛物线飞行)应用了恒定的热通量(Qw = 33 kW m〜(-2))。质量流量在1

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号