首页> 外文期刊>Journal of Heat Transfer >Upscaling of the Geological Models of Large-Scale Porous Media Using Multiresolution Wavelet Transformations
【24h】

Upscaling of the Geological Models of Large-Scale Porous Media Using Multiresolution Wavelet Transformations

机译:使用多分辨率小波变换的大型多孔介质地质模型的放大

获取原文
获取原文并翻译 | 示例
       

摘要

To model fluid flow and energy transport in a large-scale porous medium, such as an oil or a geothermal reservoir, one must first develop the porous medium's geological model (GM) that contains all the relevant data at all the important length scales. Such a model, represented by a computational grid, usually contains several million grid blocks. As a result, simulation of fluid flow and energy transport with the GM, particularly over large time scales (for example, a few years), is impractical. Thus, an important problem is upscaling of the GM. That is, starting from the GM, one attempts to generate an upscaled or coarsened computational grid with only a few thousands grid blocks, which describes fluid flow and transport in the medium as accurately as the GM. We describe a powerful upscaling method, which is based on the wavelet transformation of the spatial distribution of any static property of the porous medium, such as its permeability, or a dynamic property, such as the spatial distribution of the local fluid velocities in the medium. The method is a multiscale approach that takes into account the effect of the heterogeneities at all the length scales that can be incorporated in the GM. It generates a nonuniform computational grid with a low level of upscaling in the high permeability sectors but utilizes high levels of upscaling in the rest of the GM. After generating the upscaled computational grid, a critical step is to calculate the equivalent permeability of the upscaled blocks. In this paper, six permeability upscaling techniques are examined. The techniques are either analytical or numerical methods. The results of computer simulations of displacement of oil by water, obtained with each of the six methods, are then compared with those obtained by the GM.
机译:为了对大型多孔介质(例如石油或地热储层)中的流体流动和能量传输进行建模,必须首先开发出多孔介质的地质模型(GM),其中包含所有重要长度尺度上的所有相关数据。这种由计算网格表示的模型通常包含几百万个网格块。结果,用GM模拟流体流动和能量传输是不切实际的,尤其是在较大的时间范围内(例如几年)。因此,重要的问题是GM的升级。也就是说,从GM开始,人们试图用几千个网格块生成一个放大或粗化的计算网格,该网格描述了与GM一样准确的介质中的流体流动和传输。我们描述了一种强大的放大方法,该方法基于对多孔介质的任何静态特性(例如其渗透率)或动态特性(例如介质中局部流体速度的空间分布)的空间分布进行小波变换。该方法是一种多尺度方法,考虑了可以纳入GM的所有长度尺度上的异质性影响。它会生成一个非均匀的计算网格,该网格在高磁导率扇区中的缩放比例较低,但在其余的GM中使用了较高的缩放比例。生成放大的计算网格后,关键步骤是计算放大块的等效磁导率。本文研究了六种渗透率放大技术。该技术是分析方法或数值方法。然后将通过六种方法中的每一种获得的水驱油的计算机模拟结果与通过GM获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号