首页> 外文期刊>Journal of Heat Transfer >Inverse Determination of Eroded Smelter Wall Thickness Variation Using an Elastic Membrane Concept
【24h】

Inverse Determination of Eroded Smelter Wall Thickness Variation Using an Elastic Membrane Concept

机译:用弹性膜概念反演腐蚀的熔炉壁厚变化

获取原文
获取原文并翻译 | 示例
           

摘要

A novel algorithm has been developed for the nondestructive determination of the shape of the interface between a melt and a refractory material wall in smelter furnaces. This method uses measurements of temperature and heat flux at a number of points on the outer surface of the furnace, and assumes that the inner (guessed) surface of the furnace wall is isothermal. The temperature field is then predicted in the entire furnace wall material by numerically solving a steady state heat conduction equation subject to the measured temperature values on the external surface and the isothermal melt material solidus temperature on the inner surface of the wall. The byproduct of this analysis is the computed heat flux on the external surface. The difference between the measured and the computed heat fluxes on the outer surface of the furnace is then used as a forcing function in an elastic membrane motion concept to determine perturbations to the inner (melt-refractory) surface motion. The inverse determination of the melt-refractory interface shape can be achieved by utilizing this algorithm and any available analysis software for the temperature field in the refractory wall. The initial guess of the inner shape of the wall can be significantly different from the final (unknown) wall shape. The entire wall shape determination procedure requires typically 5-15 temperature field analyses in the furnace wall material.
机译:已经开发了一种新颖的算法,用于无损确定冶炼炉中熔体和耐火材料壁之间的界面形状。该方法使用在炉子外表面上多个点的温度和热通量的测量值,并假定炉子壁的内表面(猜测的)是等温的。然后,通过数值求解稳态热传导方程来预测整个炉壁材料中的温度场,该方程取决于壁的外表面上的测量温度值和壁的内表面上的等温熔融材料固相线温度。该分析的副产品是计算出的外表面热通量。然后,将在炉子外表面上测得的和计算出的热通量之差用作弹性膜片运动概念中的强迫函数,以确定对内部(熔融耐火材料)表面运动的扰动。可以通过使用该算法和任何可用的耐火墙温度场分析软件来逆向确定熔体-耐火界面的形状。壁的内部形状的初始猜测可能与最终(未知)的壁形状有很大不同。整个壁形状确定过程通常需要对炉壁材料进行5-15个温度场分析。

著录项

  • 来源
    《Journal of Heat Transfer》 |2010年第5期|p.052101.1-052101.8|共8页
  • 作者单位

    P.O. Box 124,Lemont, PA 16851;

    rnDepartment of Mechanical and Materials Engineering,Multidisciplinary Analysis, Inverse Design,Robust Optimization and Control (MAIDROC),Florida International University,10555 West Flagler Street,EC 3474, Miami, FL 33174;

    rnDepartment of Mechanical and Aerospace Engineering,University of Texas at Arlington,UTA Box 19018,Arlington, TX 76019;

    rnPratt & Whitney Engine Company,Turbine Discipline Engineering and Optimization Group,M/S 169-20,400 Main Street,East Hartford, CT 06108;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    inverse problems; shape determination; refractory wall; wall erosion; shape design; hearth wear;

    机译:反问题形状确定;耐火墙墙面侵蚀形状设计;炉膛磨损;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号