首页> 外文期刊>Journal of Heat Transfer >Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces
【24h】

Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces

机译:固液界面传热的表面功能化机理

获取原文
获取原文并翻译 | 示例
       

摘要

Two mechanisms that enhance heat dissipation at solid-liquid interfaces are investigated from the atomistic point of view using nonequilibrium molecular dynamics simulation. The mechanisms include surface functionalization, where -OH terminated headgroups and self-assembled monolayers (SAMs) with different chain lengths are used to recondition and modify the hydrophilicity of silica surface, and vibrational matching between crystalline silica and liquid water, where three-dimensional nanopillars are grown at the interface in the direction of the heat flux with different lengths to rectify the vibrational frequencies of surface atoms. The heat dissipation is measured in terms of the thermal conductance of the solid-liquid interface and is obtained by imposing a one-dimensional heat flux along the simulation domain. A comparison with reported numerical and experimental thermal conductance measurements for similar interfaces indicates that the thermal conductance is enhanced by 1.8-3.2 times when the silica surface is reconditioned with hydrophilic groups. The enhancement is further promoted by SAMs, which results in a 20% higher thermal conductance compared with that of the fully hydroxylated silica surface. Likewise, the presence of nanopillars enhances the interface thermal conductance by 2.6 times compared with a bare surface (without nanopillars). Moreover, for different nanopillar densities, the conductance increases linearly with the length of the pillar and saturates at around 4.26 nm. Changes in the vibrational spectrum of surface atoms and water confinement effects are found to be responsible for the increase in conductance. The modification of surface vibrational states provides a tunable path to enhance heat dissipation, which can also be easily applied to other fluids and interfaces.
机译:使用非平衡分子动力学模拟从原子学角度研究了两种增强固液界面散热的机理。其机制包括表面功能化,其中-OH封端的头基和具有不同链长的自组装单分子层(SAMs)用于修复和改性二氧化硅表面的亲水性,以及结晶二氧化硅与液态水之间的振动匹配,其中三维纳米柱在界面上沿不同长度的热通量生长原子,以校正表面原子的振动频率。根据固液界面的热导率来测量散热,并通过沿模拟域施加一维热通量来获得。与已报道的类似界面的数值和实验热导率测量结果的比较表明,当用亲水基团对二氧化硅表面进行修复时,热导率提高了1.8-3.2倍。 SAM进一步促进了这种增强,与完全羟基化的二氧化硅表面相比,热导率提高了20%。同样,与裸露的表面(无纳米柱)相比,纳米柱的存在将界面导热系数提高了2.6倍。此外,对于不同的纳米柱密度,电导率随着柱的长度线性增加,并在约4.26 nm处饱和。发现表面原子的振动光谱的变化和水约束效应是导致电导增加的原因。表面振动状态的改变提供了增强热量散发的可调路径,也可以轻松地应用于其他流体和界面。

著录项

  • 来源
    《Journal of Heat Transfer》 |2011年第8期|p.082401.1-082401.6|共6页
  • 作者单位

    Zurich Research Laboratory,IBM Research GmbH,8803 Riischlikon, Switzerland;

    Zurich Research Laboratory,IBM Research GmbH,8803 Ruschlikon, Switzerland Department of Mechanical and Process Engineering,Laboratory of Thermodynamics in Emerging Technologies,ETH Zurich,8092 Zurich, Switzerland;

    Zurich Research Laboratory,IBM Research GmbH,8803 Ruschlikon, Switzerland;

    Department of Mechanical and Process Engineering,Laboratory of Thermodynamics in Emerging Technologies,ETH Zurich,8092 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    surface functionalization; vibrational matching; interface resistance; conductance; heat transfer; molecular dynamics; solid-liquid;

    机译:表面功能化振动匹配界面电阻;电导;传播热量;分子动力学固液;
  • 入库时间 2022-08-18 00:25:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号