首页> 外文期刊>Journal of Heat Transfer >Simulation of Mist Film Cooling on Rotating Gas Turbine Blades
【24h】

Simulation of Mist Film Cooling on Rotating Gas Turbine Blades

机译:旋转式燃气轮机叶片薄雾冷却的模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Film cooling techniques have been successfully applied to gas turbine blades to protect them from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory conditions to significantly augment adiabatic cooling effectiveness by up to 50%-800% in convective heat transfer and impingement cooling. The similar concept of injecting mist into air film cooling has not been proven in the laboratory, but computational simulations have been performed on stationary turbine blades. As a continuation of previous research, this paper extends the mist film cooling scheme to the rotating turbine blade. For the convenience of understanding the effect of rotation, the simulation is first conducted with a single pair of cooling holes located near the leading edge at either side of the blade. Then, a row of multiple-hole film cooling jets is put in place under both stationary and rotating conditions. Both the laboratory (baseline) and elevated gas turbine conditions are simulated and compared. Elevated conditions refer to a high temperature and pressure closer to actual gas turbine working conditions. The effects of various parameters including mist concentration, water droplet diameter, droplet wall boundary condition, blowing ratio, and rotational speed are investigated. The results showed that the effect of rotation on droplets under laboratory conditions is minimal. The computational fluid dynamics (CFD) model employed is the discrete phase model (DPM) including both wall film and droplet reflect conditions. The results showed that the droplet-wall interaction is stronger on the pressure side than on the suction side, resulting in a higher mist cooling enhancement on the pressure side. The average rates of mist cooling enhancement of about 15% and 35% were achieved under laboratory and elevated conditions, respectively. This translates to a significant blade surface temperature reduction of 100-125 K with 10% mist injection at elevated conditions.
机译:薄膜冷却技术已成功应用于燃气轮机叶片,以保护其免受热烟气的伤害。然而,不断增加涡轮进口温度以提高涡轮效率的需求要求薄膜冷却效率的不断提高。在实验室条件下,将雾(微小的水滴)注入冷却液的概念已被证明可以大大提高绝热冷却效率,在对流传热和冲击冷却中,绝热冷却效率最高可提高50%-800%。将薄雾注入气膜冷却的类似概念尚未在实验室中得到验证,但是已经对固定式涡轮机叶片进行了计算仿真。作为先前研究的延续,本文将雾膜冷却方案扩展到了旋转的涡轮叶片上。为了方便理解旋转效果,首先使用位于叶片任一侧前缘附近的一对冷却孔进行模拟。然后,在固定和旋转条件下,将一排多孔薄膜冷却喷嘴放置到位。模拟和比较了实验室(基准)和燃气轮机的高温条件。升高的条件是指接近实际燃气轮机工作条件的高温和高压。研究了各种参数的影响,包括雾浓度,水滴直径,水滴壁边界条件,吹风比和转速。结果表明,在实验室条件下旋转对液滴的影响极小。所采用的计算流体动力学(CFD)模型是离散相模型(DPM),包括壁膜和液滴反射条件。结果表明,在压力侧的液滴-壁相互作用比在吸力侧更强,从而导致在压力侧更高的雾冷却增强。在实验室和升高的条件下,分别实现了约15%和35%的平均雾冷却增强率。这意味着在升高的条件下,如果喷射10%的雾气,叶片表面的温度将明显降低100-125K。

著录项

  • 来源
    《Journal of Heat Transfer》 |2012年第1期|p.011501.1-011501.11|共11页
  • 作者

    T. S. Dhanasekaran; Ting Wang;

  • 作者单位

    Energy Conversion and Conservation Center,University of New Orleans,New Orleans, LA 70148-2220;

    Energy Conversion and Conservation Center,University of New Orleans,New Orleans, LA 70148-2220;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    film cooling; surface curvature; mist cooling; heat transfer enhancement;

    机译:薄膜冷却;表面曲率雾冷却传热增强;
  • 入库时间 2022-08-18 00:25:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号