首页> 外文期刊>Journal of Heat Transfer >Effect of Wettability on Pool Boiling Incipience in Saturated Water
【24h】

Effect of Wettability on Pool Boiling Incipience in Saturated Water

机译:润湿性对饱和水中游泳池沸腾强度的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Three different copper surfaces - bare, Al_2O_3 nano-coated, and Polytetrafluoroethylene (PTFE) coated - are prepared and tested to examine the effect of wettability on the pool boiling incipience in saturated water at 1 atm. A copper surface is coated with Al_2O_3 particles ranging 25-43 nm in diameter by immersing the surface in Al_2O_3/ethanol nanofluid (1g/l) and boiled for 3 min. SEM image in Fig. 1 shows the coated Al_2O_3 nanoparticles on the copper surface, together with the reference bare surface. PTFE coating is also applied to the copper surface using spin coating method with the mixture of Dupont AF 2400 particles and 3M FC-40 solvent. The final coating thickness of the PTFE coating is estimated to be 30 nm. The three surfaces exhibit different static contact angles, 78° (bare), 28° (nano-coated), and 120° (PTFE coated) in Fig. 2, respectively. Wettability affects the boiling incipience heat flux where initial bubble nucleation starts: 15 kW/m~2 for the bare surface; 30 kW/m~2 for the nano-coated surface; and 2.5 kW/m~2 for the PTFE coated surface. Captured images from the high speed camera at 2,000 fps show significantly different bubble shapes and departure frequencies in Fig. 3. During the bubble growth, advancing contact angles are captured and shown qualitatively and found consistent with their static angle measurements for the sessile droplet observed at each surface. The larger bubble is generated on the nano-coated surface compared to that of the bare surface because improved wetting makes promising cavities flood and thus incipience is delayed, resulting in higher superheat. The single bubble life cycle appears to be much longer on the PTFE coated surface due to the increase of the contact angle which becomes hydrophobic (> 90°), resulting in lower bubble departure frequency. Successive tests at the same heat flux of 30 kW/m~2 confirmed that life cycle on the PTFE coated surface (88.5 ms) is consistently longer than that on the bare surface (16.5 ms) and nano-coated surface (20 ms).
机译:制备并测试了三种不同的铜表面-裸露,Al_2O_3纳米涂层和聚四氟乙烯(PTFE)涂层,以检查润湿性对饱和水在1 atm时池沸腾开始的影响。通过将铜表面浸入Al_2O_3 /乙醇纳米流体(1g / l)中,并用直径为25-43 nm的Al_2O_3颗粒涂覆表面,并煮沸3分钟。图1中的SEM图像显示了铜表面上的涂层Al_2O_3纳米颗粒以及参考裸露表面。还可以使用Dupont AF 2400颗粒和3M FC-40溶剂的混合物通过旋涂方法在铜表面上涂覆PTFE涂层。 PTFE涂层的最终涂层厚度估计为30 nm。在图2中,这三个表面分别具有不同的静态接触角,分别为78°(裸露),28°(纳米涂层)和120°(PTFE涂层)。润湿性会影响初始气泡成核开始时的沸腾开始热通量:裸露表面为15 kW / m〜2;纳米涂层表面为30 kW / m〜2; PTFE涂层的表面为2.5 kW / m〜2。从高速相机以2,000 fps捕获的图像在图3中显示出明显不同的气泡形状和离开频率。在气泡生长过程中,捕获并定性显示了前进的接触角,发现与它们在静止不动液滴上的静态角度测量值一致。每个表面。与裸露的表面相比,在纳米涂层的表面上会产生更大的气泡,这是因为改进的润湿性使充满希望的空腔泛滥,从而延缓了初生,导致更高的过热度。由于接触角增加而变成疏水性(> 90°),因此在PTFE涂层表面上的单个气泡寿命周期似乎更长,从而降低了气泡离开频率。在相同的30 kW / m〜2的热通量下进行的连续测试证实,PTFE涂层表面(88.5 ms)的寿命始终比裸露表面(16.5 ms)和纳米涂层表面(20 ms)更长。

著录项

  • 来源
    《Journal of Heat Transfer》 |2016年第8期|080910.1-080910.1|共1页
  • 作者单位

    Multi-Scale Heat Transfer Lab, Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA;

    Multi-Scale Heat Transfer Lab, Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA;

    Dept. of Extreme Thermal Systems, Korea Institute of Machinery and Materials, Daejeon, Korea;

    School of Mechanical Engineering, Chung-Ang University, Seoul, Korea;

    Multi-Scale Heat Transfer Lab, Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:22:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号