首页> 外文期刊>Journal of Heat Transfer >Condensation Droplet Distribution Regulated by Electrowetting
【24h】

Condensation Droplet Distribution Regulated by Electrowetting

机译:电润湿调节的冷凝液滴分布

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a visualization of condensation droplet distribution affected by the electrowetting-on-dielectric (EWOD) approach. A single-side double-layer-electrode design (grid wire, thin wire, and thick wire) and coplanar-electrode design (zigzag) are discussed. Side-by-side experiments with applied 40 V DC electric potential are carried out to compare droplet distribution between identically designed charged and uncharged devices. The uncharged devices show a random droplet distribution, whereas charged devices have a regulated distribution based on the designed patterns. As droplets on the electrode boundaries become larger, they are likely to slide away and stay in electrode-free regions. The droplets "sit" inside the grid wires and distribute vertically along thin and thick wires. On the coplanar-electrode zigzag device, droplets are distributed vertically. The charged surfaces lead to a faster droplet growth rate and more dispersed droplet distribution. This phenomenon accelerates the shedding frequency of the droplets and frees up more areas for small droplets to nucleate and grow. The first shedding moment of the charged surfaces occurs earlier than the uncharged ones for all types of EWOD devices. The detected droplet shedding diameter ranges from 1.2mm to 2.5mm in this study. The number of large droplets is found greater on the charged devices compared with the uncharged devices and theoretical model. The work presented in this paper introduces a novel approach to actively influence droplet distribution on microfabricated condensing surfaces and indicates great potential for improving the condensation heat transfer rate via EWOD.
机译:本文介绍了受电介质上电润湿(EWOD)方法影响的凝结液滴分布的可视化。讨论了单面双层电极设计(网格线,细线和粗线)和共面电极设计(之字形)。进行了施加40 V DC电势的并排实验,以比较相同设计的带电和不带电设备之间的液滴分布。不带电的设备显示随机的液滴分布,而带电的设备根据设计的模式具有规则的分布。随着电极边界上的液滴变大,它们可能会滑走并停留在无电极区域。液滴“坐在”网格线内部,并沿细线和粗线垂直分布。在共面电极之字形设备上,液滴垂直分布。带电的表面导致更快的液滴生长速率和更分散的液滴分布。这种现象加快了液滴的脱落频率,并释放了更多的区域供小液滴成核并生长。对于所有类型的EWOD设备,带电表面的第一次脱落时刻都比不带电表面的第一次脱落时刻更早。在本研究中,检测到的液滴脱落直径范围为1.2mm至2.5mm。与不带电设备和理论模型相比,带电设备上的大液滴数量更多。本文介绍的工作介绍了一种新颖的方法来主动影响微细冷凝表面上的液滴分布,并显示出通过EWOD改善冷凝传热速率的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号