...
首页> 外文期刊>Journal of Hazardous Materials >Heavy metal recovery combined with H_2 production from artificial acid mine drainage using the microbial electrolysis cell
【24h】

Heavy metal recovery combined with H_2 production from artificial acid mine drainage using the microbial electrolysis cell

机译:利用微生物电解池从人工酸性矿山排水中回收重金属并生产H_2

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of this study was to utilize the microbial electrolysis cell (MEC) for metal removal from acid mine drainage (AMD) and simultaneous H_2 production. A dual-chamber MEC was developed to concurrently produce H_2 and remove Cu~(2+), Ni~(2+), and Fe~(2+) from AMD under single and mixed metal conditions. With an applied voltage of 1.0 V, Cu~(2+) in the AMD was prior to others to be recovered at the cathode, followed by Ni~(2+), and finally Fe~(2+). The H_2 production rates achieved during the AMD treatment were in the range of 0.4-1.1 m~3 m~(-3) d~(-1), and the highest rate was obtained with the AMD containing single Cu~(2+). The highest efficiency of cathode electron recovery reached 89%, which was obtained with the AMD containing mixed metals. The recovered electrons were used for both H_2 production and metal reduction. The energy recovery efficiency of MEC reached up to 100%, suggesting that H_2 generated from AMD was sufficient to offset the energy input during the treatment. The MEC was successfully applied to remove metals from the AMD, recover value-added products of Cu~0 and Ni~0, and to produce H_2.
机译:这项研究的目的是利用微生物电解池(MEC)从酸性矿山排水(AMD)中去除金属并同时生产H_2。开发了一种双室MEC,可在单金属和混合金属条件下同时产生H_2,并从AMD中去除Cu〜(2 +),Ni〜(2+)和Fe〜(2+)。在1.0 V的施加电压下,AMD中的Cu〜(2+)先于阴极被回收,其次是Ni〜(2+),最后是Fe〜(2+)。 AMD处理过程中H_2的生成速率在0.4-1.1 m〜3 m〜(-3)d〜(-1)的范围内,而含有单Cu〜(2+)的AMD的H_2生成率最高。 。阴极电子的最高回收率达到89%,这是由含AMD的混合金属获得的。回收的电子用于H_2的产生和金属的还原。 MEC的能量回收效率高达100%,表明AMD产生的H_2足以抵消治疗期间的能量输入。 MEC已成功应用于去除AMD中的金属,回收Cu〜0和Ni〜0的增值产品以及生产H_2。

著录项

  • 来源
    《Journal of Hazardous Materials》 |2014年第15期|153-159|共7页
  • 作者单位

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

    School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microbial electrolysis cell; Metal recovery; Hydrogen production; Energy evaluation;

    机译:微生物电解池;金属回收;制氢;能源评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号