首页> 外文期刊>Journal of Hazardous Materials >Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions
【24h】

Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions

机译:代谢和代谢条件下1,4-二恶烷的好氧生物降解动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Biodegradation of 1,4-dioxane has been studied extensively, however, there is insufficient information on the kinetic characteristics of cometabolism by propanotrophs and a lack of systematic comparisons to metabolic biodegradation. To fill In these gaps, experiments were performed with suspended growth cultures to determine 16 Monad kinetic coefficients that describe metabolic consumption of 1,4-dioxane by Pseudonocarclia dioxanivorans CB1190 and cometabolism by the propanotrophic mixed culture ENV487 and the propanotroph Rhodococcus tuber ENV425. Maximum specific growth rates were highest for ENV425, followed by ENV487 and CB1190. Half saturation constants for 1,4-dioxane for the propanotrophs were one-half to one-quarter those for CB1190. Propane was preferentially degraded over 1,4-dioxane, but the reverse did not occur. A kinetic model was used to simulate batch biodegradation of 1,4-dioxane. Propanotrophs decreased 1,4-dioxane from 1000 to 1 mu g/L in less time than CB1190 when the initial biomass concentration was 0.74 mg COD/L; metabolic biodegradation was favored at higher initial biomass concentrations and higher initial 1,4-dioxane concentrations. 1,4-Dioxane biodegradation was inhibited when oxygen was below 1.5 mg/L. The kinetic model provides a framework for comparing in situ biodegradation of 1,4-dioxane via bioaugmentation with cultures that use the contaminant as a growth substrate to those that achieve biodegradation via cometabolism.
机译:1,4-二恶烷的生物降解已被广泛研究,但是,关于由营养菌引起的新陈代谢的动力学特征的信息不足,并且缺乏与代谢生物降解的系统比较。为了填补这些空白,对悬浮生长培养物进行了实验,以确定16个Monad动力学系数,这些动力学系数描述了假单胞菌二恶草酸CB1190的1,4-二恶烷的代谢消耗以及丙酸营养的混合培养物ENV487和丙酸营养的红球菌ENV425的代谢作用。 ENV425的最大比增长率最高,其次是ENV487和CB1190。丙烷的1,4-二恶烷的半饱和常数为CB1190的一半至四分之一。丙烷比1,4-二恶烷优先降解,但没有发生相反的情况。使用动力学模型来模拟1,4-二恶烷的分批生物降解。当初始生物量浓度为0.74 mg COD / L时,丙烷营养物质将1,4-二恶烷从1000降低到1μg/ L的时间比CB1190短。在较高的初始生物质浓度和较高的初始1,4-二恶烷浓度下,代谢生物降解是有利的。当氧气低于1.5 mg / L时,会抑制1,4-二恶烷的生物降解。动力学模型提供了一个框架,用于比较通过生物强化原位生物降解与使用污染物作为生长底物的培养物与通过新陈代谢实现生物降解的培养物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号