首页> 外文期刊>Journal of Hazardous Materials >Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites
【24h】

Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites

机译:基于S. aureus / ZnO复合材料的界面电子转移,通过亲水锌(ZnO)纳米粒子在水性环境中的可见光光催化在水性环境中的可见光光催化剂灭活

获取原文
获取原文并翻译 | 示例
       

摘要

Waterborne diseases caused by pathogenic microorganisms pose severe threats to human health. ZnO nan-oparticles (NPs) hold great potentials as an effective, economical and eco-friendly method for water disinfection, but the exact antimicrobial mechanism of ZnO NPs under visible-light illumination is still not clear. Herein, we investigate the visible-light-driven photocatalytic inactivation mechanism of amino-functionalized hydrophilic ZnO (AH-ZnO) NPs against Staphylococcus aureus (S. aureus) in aqueous environment from the perspective of electron transfer theory. The results show that the antibacterial effects of AH-ZnO NPs are dependent on the AH-ZnO NPs concentration and treatment time. The bulk ORP value and released Zn2+ concentration in AH-ZnO NPs solutions increase with AH-ZnO NPs concentration. The SEM and intracellular protein leakage results indicate that AH-ZnO NPs can adhere to S. aureus surface without causing obvious cell membrane disruption. The photoluminescence (PL) intensity and fluorescence lifetime of AH-ZnO NPs are remarkedly decreased after adding S. aureus, which confirms the electron transfer from S. aureus to AH-ZnO NPs. Moreover, the.PL intensity is closely correlated with the inactivation efficiency, demonstrating that the interfacial electron transfer in S. aureus/AH-ZnO NPs composites contributes to the antibacterial activity, which is speculated to disrupt the normal respiratory electron transfer chain of S. aureus, thereby causing intracellular ROS generation, cell membrane depolarization and eventually apoptosis-like death.
机译:由致病微生物引起的水性疾病对人类健康构成严重威胁。 ZnO Nan-Oparticles(NPS)具有巨大的潜力,作为一种有效,经济和生态友好的水消毒方法,但ZnO NP在可见光照明下的确切抗菌机制仍然尚不清楚。在此,我们从电子转移理论的角度研究了氨基官能化亲水ZnO(AH-ZnO)NPS对水环境中金黄色葡萄球菌(S.UUREUS)的可见光光催化机制。结果表明,AH-ZnO NPS的抗菌作用取决于AH-ZnO NPS浓度和治疗时间。 AH-ZnO NPS溶液中的散装ORP值和释放的Zn2 +浓度随AH-ZnO NPS浓度而增加。 SEM和细胞内蛋白质泄漏结果表明AH-ZnO NPS可以粘附到金黄色葡萄球菌表面而不会引起明显的细胞膜破坏。在加入金黄色葡萄球菌后,AH-ZnO NPS的光致发光(PL)强度和荧光寿命令人难以降低,该金黄色葡萄球菌证实从S.UUREUS到AH-ZnO NPS的电子转移。此外,.PL强度与灭活效率密切相关,表明S.UUREUS / AH-ZnO NPS复合材料中的界面电子转移有助于抗菌活性,这试图破坏S的正常呼吸电子转移链。金黄色葡萄球菌,从而导致细胞内ROS产生,细胞膜去极化和最终凋亡的死亡。

著录项

  • 来源
    《Journal of Hazardous Materials》 |2021年第15期|126013.1-126013.13|共13页
  • 作者单位

    Zhengzhou Univ Coll Agr Sci Henan Key Lab Ion Beam Bioengn Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Sch Phys & Microelect Henan Key Lab Diamond Optoelect Mat & Devices Key Lab Mat Phys Minist Educ Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Coll Agr Sci Henan Key Lab Ion Beam Bioengn Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Coll Agr Sci Henan Key Lab Ion Beam Bioengn Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Coll Agr Sci Henan Key Lab Ion Beam Bioengn Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Sch Phys & Microelect Henan Key Lab Diamond Optoelect Mat & Devices Key Lab Mat Phys Minist Educ Zhengzhou 450052 Peoples R China;

    Zhengzhou Univ Sch Phys & Microelect Henan Key Lab Diamond Optoelect Mat & Devices Key Lab Mat Phys Minist Educ Zhengzhou 450052 Peoples R China;

    Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Suzhou 215163 Peoples R China;

    Zhengzhou Univ Coll Agr Sci Henan Key Lab Ion Beam Bioengn Zhengzhou 450052 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Amino-functionalized hydrophilic ZnO NPs; Staphylococcus aureus; Interfacial electron transfer; Antibacterial mechanism; Apoptosis-like death;

    机译:氨基官能化亲水性ZnO NPS;金黄色葡萄球菌;界面电子转移;抗菌机制;凋亡的死亡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号