首页> 外文期刊>Journal of Hazardous Materials >Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe_3O_4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment
【24h】

Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe_3O_4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment

机译:纳米Fe_3O_4中芳香环切割机理的芳族环裂解机理分析煤热解废水治疗煤热解焦炭增强生物系统

获取原文
获取原文并翻译 | 示例
       

摘要

In current study, nano-Fe3O4@activated coke enhanced bio-system (FEBS) under limited-oxygen condition was applied for efficient treatment of aromatic organics in coal pyrolysis wastewater. Metagenomic analyses revealed functional microbiome linkages and mechanism involved in aromatic ring-cleavage. Based on biodegradation efficiency in different reactors, FEBS supplementation conferred the best organic removal (avg. 92.29%). It also showed a remarkable advantage in biodegradability maintenance ( 40%) over control reactors. Metagenomics profiling revealed the degradation processes were driven by Fe3O4 redox reactions and microbial biofilm, while the suspended sludge was the principal force for aromatic mineralization. Based on the analysis of functional species and genes, most bacteria cleaved the benzene ring preferably through the aerobic pathways, mediated by catechol 1, 2-dioxygenase, catechol 2, 3-dioxygenase and protocatechuate 3, 4-dioxygenase (66-84%). Ecological network showed that Comamonas testosterone-centered microbiome and Azotobacter linked to the nitrogen (N)-heterocyclic ring-cleavage. Network linkage further demonstrated that Alicycliphilus and Acidovorax were the key tone taxa involved in benzene ring-cleavage. Finally, combined with analysis of degradation products, bacteria degraded N-heterocyclic ring containing organic aromatic compounds (quinoline) mainly through anaerobic processes, whereas cleavage of benzene ring preferred aerobic pathways. The enriched functional species were the primary reason for the enhanced biodegradation in FEBS.
机译:在目前的研究中,在有限氧气条件下纳米-FE3O4 @活化焦炭增强生物系统(FEBS)用于有效处理煤热解废水中的芳族物体。聚丙酰基分析显示芳族环切割中涉及的功能性微生物组键和机制。基于不同反应堆中的生物降解效率,FEBS补充赋予了最佳的有机物去除(AVG。92.29%)。它还在对照反应器上显示了生物降解性维持(& 40%)的显着优势。 Metagenomics分析显示,通过Fe3O4氧化还原反应和微生物生物膜驱动降解过程,而悬浮污泥是芳族矿化的主要力。基于函数物种和基因的分析,大多数细菌优选地通过需氧途径地切割苯环,由儿茶酚1,2-二氧化根果,儿茶酚2,3-二氧化根酶和ProtocateChers 3,4-二氧化根果(66-84%)介导。生态网络表明,与氮气(n) - 含氮环裂解的鉴定睾酮睾丸激素中心的微生物组和偶氮杆。网络联动进一步证明了脂环藻和酸胃,苯甲酸克族裂解群。最后,结合降解产物的分析,细菌的含有有机芳族化合物(喹啉)的N-杂环主要通过厌氧过程,而苯环优选的有氧途径的切割。富集的功能物种是FEBS增强生物降解的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号