首页> 外文期刊>Journal of Hazardous Materials >Efficient oxidation/mineralization of pharmaceutical pollutants using a novel Iron (Ⅲ) oxyhydroxide nanostructure prepared via plasma technology: Experimental, modeling and DFT studies
【24h】

Efficient oxidation/mineralization of pharmaceutical pollutants using a novel Iron (Ⅲ) oxyhydroxide nanostructure prepared via plasma technology: Experimental, modeling and DFT studies

机译:通过等离子体技术制备的新型铁(Ⅲ)羟基氧化铁纳米结构的高效氧化/矿化药物污染物:实验,建模和DFT研究

获取原文
获取原文并翻译 | 示例
           

摘要

High-performance novel iron oxyhydroxide (limonite) nanostructure, with improved surface reactive sites, was prepared via one-pot, eco-friendly, free precursor and cold glow discharge N-2-plasma technique. Natural and plasma treated (PTNL/N-2) limonite samples were characterized by FESEM, XPS, XRD, FTIR, AAS, EDX, BET/BJH and pH(pzc) to confirm the successful synthesis. Central composite design (CCD) and artificial neural network (ANN, topology of 4:8:1) methods were utilized to study the oxidation/mineralization of phenazopyridine (PhP) as a hazardous contaminant by heterogeneous catalytic ozonation process (HCOP). The obtained results indicated that PTNL/N-2 had the highest catalytic performance in PhP degradation (98.6% in 40 min) and mineralization (80.4% in 120 min). The degradation mechanism in different processes was investigated by dissolved ozone concentration, various organic scavengers (BQ and TBA) and inorganic salts (NaNO3, NaCl, Na2CO3 and NaH2PO4). Moreover, reusability-stability, Fe and nitrogen (NO3- and NH4+) ions release were assessed during different AOPs. Furthermore, toxicity tests indicated that the HCOP using PTNL/N-2 was able to detoxify the PhP solutions efficiently. Finally, Density Functional Theory (DFT) studies were employed to introduce the most plausible contaminant degradation pathway, reactive sites and byproducts. This research provided a new insight into the improvement of wastewater treatment studies by a combination of experiment and computer simulation.
机译:高性能新颖羟基氧化铁(褐铁矿)纳米结构,具有改善的表面的反应位点,经单釜,生态友好的,不含前体和冷辉光放电N-2-等离子体技术制备。天然和等离子体处理(PTNL / N-2)褐铁矿样品进行表征通过FESEM,XPS,XRD,FTIR,AAS,EDX,BET / BJH和pH(PZC)确认成功合成。中心复合设计(CCD)和人工神经网络(ANN,4拓扑:8:1)方法被用来研究非那吡啶(PHP)的氧化/矿化如通过非均相催化臭氧化过程(HCOP)危险的污染物。将所得到的结果表明,PTNL / N-2具有在PHP降解的最高的催化性能(在40分钟98.6%)和矿化(在120分钟为80.4%)。在不同的过程中的降解机理是由溶解的臭氧浓度,各种有机清除剂(BQ和TBA)和无机盐(硝酸钠,氯化钠,碳酸钠和磷酸二氢钠)研究。此外,可重用性稳定性,Fe和氮(NO3-和NH 4 +)离子的释放过程中不同的AOP进行了评估。此外,毒性试验表明,使用PTNL的HCOP / N-2能够有效地解毒PHP的解决方案。最后,采用了密度泛函理论(DFT)研究引进最合理的污染物降解途径,活性位点和副产品。本研究通过实验和计算机模拟的组合提供了新的见解废水处理研究的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号