...
首页> 外文期刊>Journal of Hazardous Materials >Deciphering the molecular mechanism behind stimulated co-uptake of arsenic and fluoride from soil, associated toxicity, defence and glyoxalase machineries in arsenic-tolerant rice
【24h】

Deciphering the molecular mechanism behind stimulated co-uptake of arsenic and fluoride from soil, associated toxicity, defence and glyoxalase machineries in arsenic-tolerant rice

机译:理解耐砷水稻从土壤中共同吸收砷和氟,相关的毒性,防御和乙二醛酶机制的分子机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The current study elucidates the uncharacterized biohazard associated with rice growth in arsenic and fluoride co-contaminated sites. Analysis of the arsenic-tolerant rice cultivar, Muktashri (known to restrict arsenic uptake) revealed that fluoride largely stimulated arsenic bioaccumulation in the stressed tissues and vice versa. Gene expression studies revealed that high arsenic uptake was facilitated by the fluoride-dependent up regulation of phosphate transporter2 (PT2), PT8 and low silicon rice1 (Lsi1), and elevated fluoride accumulation was stimulated by the arsenic-mediated induction of chloride channels (CLCs). The endogenous accumulation of fluoride and arsenic increased reactive oxygen species (ROS), O-2(-), membrane peroxidation and arsenic localization within tissues. This inhibited plant growth by triggering chlorosis, electrolyte leakage, malondialdehyde production (due to high lipoxygenase activity), protein carbonylation, protease activity and methylglyoxal accumulation due to inhibited glyoxylase activity. Metabolic analysis showed inhibited proline biosynthesis along with increased channelization of glutathione towards phytochelatin synthase and glutathione-S-tranferase-dependent pathways. Inhibition of the antioxidant enzymes like catalase, ascorbate peroxidase and guaiacol peroxidase validated the inefficient scavenging of H2O2 during combined stress. In silico analyses predicted the ecotoxicological risks of arsenic-fluoride complex formed during joint stress. Overall, our investigation illustrated the underlying mechanism of arsenic-fluoride co-uptake which resulted in complete suppression of the 'tolerant'-phenotype in Muktashri seedlings.
机译:当前的研究阐明了砷和氟化物共同污染地区与水稻生长相关的未表征的生物危害。对耐砷水稻品种Muktashri(已知限制砷吸收)的分析表明,氟化物在很大程度上刺激了胁迫组织中砷的生物积累,反之亦然。基因表达研究表明,磷转运蛋白2(PT2),PT8和低硅水稻1(Lsi1)的氟依赖上调促进了高砷的吸收,砷介导的氯离子通道(CLCs)刺激了氟积累的增加。 )。氟化物和砷的内源性积累增加了组织内的活性氧(ROS),O-2(-),膜过氧化和砷的定位。这通过触发萎黄病,电解质泄漏,丙二醛生成(由于高脂氧合酶活性),蛋白质羰基化,蛋白酶活性和由于乙二醛酶活性受抑制的甲基乙二醛积累而抑制了植物的生长。代谢分析显示脯氨酸的生物合成受到抑制,同时谷胱甘肽向植物螯合素合酶和谷胱甘肽-S-转移酶依赖性途径的通道化增加。对过氧化氢酶,抗坏血酸过氧化物酶和愈创木酚过氧化物酶等抗氧化酶的抑制作用验证了联合胁迫期间H2O2的清除效率低下。在计算机分析中预测了在联合胁迫期间形成的氟化砷复合物的生态毒理风险。总体而言,我们的研究表明了氟砷共吸收的潜在机制,该机制导致完全抑制Muktashri幼苗的“耐受”表型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号