首页> 外文期刊>Journal of Geodesy >Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver
【24h】

Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver

机译:Sentinel-6a使用组合的GPS / Galileo接收器精确轨道确定

获取原文
获取原文并翻译 | 示例
           

摘要

The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30-50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm.
机译:Sentinel-6(或Jason-CS)Altimetry任务提供了Topex和Jason-1 / 2/3用于海洋表面地形监测的长期扩展。高度计数据分析依赖于对轨道位置的高度准确知识,并且需要径向RMS轨道误差小于1.5厘米。对于精确的轨道确定(POD),Sentinel-6a SpaceCraft配备有双星座GNSS接收器。我们介绍了Sentinel-6a Pod解决方案的结果,以自发射起来的前6个月,并用双星座产品展示了含糊不清固定的GPS和伽利略解决方案的1cm一致性。在运动和减少动态轨道的比较中实现了类似的性能(1.3cm 3D rms)。虽然伽利略测量比GPS的误差呈30-50%,但POD大部分受益于组合的双频解决方案中的卫星增加的可用性。考虑到GNSS接收器天线的预关键任务校准中的明显不确定性,需要对GPS和Galileo信号频率的相控中心的独立机电校准。因此,伽利略观察不能提供独立的比例信息,并且估计的轨道高度最终由采用的力量模型和对航天器内部质量中心位置的知识驱动。使用来自所选高性能站的卫星激光测距(SLR),获得与GNSS的轨道的SLR正常点的优于1cm RMS一致性,在将特定地点的校正调整到站位置时,进一步改善了6mm rms和测距偏见。对于径向轨道分量,从SLR分析中发现偏差小于1mm,相对于13个高性能SLR站的平均高度。总的来说,基于GPS和伽利略追踪的减少动态轨道测定被认为容易满足高度偏转的哨声-6任务需求,对于小于1.5厘米的RMS高度误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号