...
首页> 外文期刊>Journal of Geodesy >A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling
【24h】

A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling

机译:残余地形建模(RTM)技术的数值研究和使用超高光谱重力建模的谐波校正

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Residual terrain modelling (RTM) plays a key role for short-scale gravity modelling in physical geodesy, e.g. for interpolation of observed gravity and augmentation of global geopotential models (GGMs). However, approximation errors encountered in RTM computation schemes are little investigated. The goal of the present paper is to examine widely used classical RTM techniques in order to provide insights into RTM-specific approximation errors and the resulting RTM accuracy. This is achieved by introducing a new, independent RTM technique as baseline that relies on the combination of (1) a full-scale global numerical integration in the spatial domain and (2) ultra-high-degree spectral forward modelling. The global integration provides the full gravity signal of the complete (detailed) topography, and the spectral modelling that of the RTM reference topography. As a main benefit, the RTM baseline technique inherently solves the "non-harmonicity problem" encountered in classical RTM techniques for points inside the reference topography. The new technique is utilized in a closed-loop type testing regime for in-depth examination of four variants of classical RTM techniques used in the literature which are all affected by one or two types of RTM-specific approximation errors. These are errors due to the (1) harmonic correction (HC) needed for points located inside the reference topography, (2) mass simplification, (3) vertical computation point inconsistency, and (4) neglect of terrain correction (TC) of the reference topography. For the Himalaya Mountains and the European Alps, and a degree-2160 reference topography, RTM approximation errors are quantified. As key finding, approximation errors associated with the standard HC (4 pi G rho H-P(RTM)) may reach amplitudes of similar to 10 mGal for points located deep inside the reference topography. We further show that the popular RTM approximation (2 pi G rho H-P(RTM) - TC) suffers from severe errors that may reach similar to 90 mGal amplitudes in rugged terrain. As a general conclusion, the RTM baseline technique allows inspecting present and future RTM techniques down to the sub-mGal level, thus improving our understanding of technique characteristics and errors. We expect the insights to be useful for future RTM applications, e.g. in geoid modelling using remove-compute-restore techniques, and in the development of new GGMs or high-resolution augmentations thereof.
机译:残余地形建模(RTM)对于物理大地测量学中的短程重力建模起着关键作用,例如用于观测重力的插值和全局地势模型(GGM)的扩充。但是,很少研究RTM计算方案中遇到的近似误差。本文的目的是研究广泛使用的经典RTM技术,以便深入了解RTM特定的近似误差和所得RTM精度。这是通过引入一种新的,独立的RTM技术作为基线来实现的,该技术依赖于(1)空间域中的全面全局数值积分和(2)超高阶光谱正向建模的组合。全局积分提供完整(详细)地形的完整重力信号,以及RTM参考地形的频谱建模。作为一项主要优点,RTM基线技术固有地解决了传统RTM技术在参考地形内部点所遇到的“非谐波问题”。这项新技术在闭环类型测试方案中用于深入检查文献中使用的四种经典RTM技术的变体,这些变体都受一种或两种类型的RTM特定的近似误差的影响。这些是由于(1)位于参考地形内部的点所需的谐波校正(HC),(2)质量简化,(3)垂直计算点不一致以及(4)忽略了地形校正(TC)而导致的错误参考地形。对于喜马拉雅山脉和欧洲阿尔卑斯山,以及2160度的参考地形,对RTM近似误差进行了量化。作为关键发现,与标准HC(4 pi G rho H-P(RTM))相关的近似误差对于位于参考地形内部较深的点可能会达到类似于10 mGal的幅度。我们进一步证明,流行的RTM近似值(2 pi G rho H-P(RTM)-TC)遭受严重的误差,在崎terrain的地形中可能会达到类似于90 mGal的幅度。总的来说,RTM基线技术允许检查当前和将来的RTM技术,直至低于mGal级,从而提高了我们对技术特性和错误的理解。我们希望这些见解对将来的RTM应用很有用,例如使用移除,计算,还原技术进行大地水准面建模,以及开发新的GGM或其高分辨率增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号