首页> 外文期刊>Journal of Fuel Cell Science and Technology >Development and Simulation of an Innovative Planar Stack Design-Combining a Solid Oxide Fuel Cell (SOFC) With an Allothermal Steam Reformer
【24h】

Development and Simulation of an Innovative Planar Stack Design-Combining a Solid Oxide Fuel Cell (SOFC) With an Allothermal Steam Reformer

机译:结合固体氧化物燃料电池(SOFC)和变热蒸汽重整器的创新平面堆设计的开发和仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing energy demands, limited resources, pollutants, and CO2-emissions caused bynthe use of fossil fuels require a more efficient and sustainable energy production. Due tontheir high electrical efficiencies as well as fuel and application flexibilities, high temperaturenfuel cells offer great potential to meet the demands of the future energy supply. Thenfuel gases hydrogen and carbon monoxide, which are electrochemically convertible innsolid oxide fuel cells (SOFCs), have to be generated by reformation or gasification ofnhydrocarbons, or in the case of pure hydrogen, as fuel gas, by electrolysis. For thesengenerating processes energy is required. This generally leads to a deterioration of SOFCsystemnefficiencies. At state of the art combined processes, the reformation or gasificationnreactor and the SOFC are usually separated. The heat required for the endothermicnreforming is generated by partial oxidation (POx) of the supplied fuel or by using thenwaste heat of the exhaust gases. At the Institute for Heat- and Fuel-Technology of thenTechnische Universität Braunschweig, an innovative planar SOFC-stack-design with indirectninternal reforming and without bipolar plates was developed. Due to the thermalnand material couplings, the SOFC-waste heat can be directly used to supply the endothermicnreforming process. Additionally, a part of the hot anode off-gas, consistingnmainly of water vapor, is recycled as a reforming agent. Therefore, based on the principlenof the chemical heat pump, depending on the fuel used, system efficiencies of more thann60% can be achieved, even though the SOFC itself reached only an electrical efficiencynof approximately 50%. Additionally, due to the cascaded SOFC structure resulting innhigh fuel utilization, postcombustion of the waste gases is no longer necessary. Becausenof the SOFC membrane allowing only an oxygen-ion flow and thus representing an airnseparation unit and the SOFC design without the mixing of anode and cathode flows, ansimple CO2-separation can be realized by condensing the water vapor out of the anodenoff-gas. Another advantage of the newly developed stack design is its parallel interconnection,nwhich leads to higher reliability concerning single stack levels. The aim of thenwork was a first dimensioning of the new stack design for natural gas as a fuel and itsnenergetical analysis concerning operation and feasibility. With the simulation programndeveloped, the theoretical feasibility of the concept and a high electrical efficiency ofnabout 60% were proven.
机译:因使用化石燃料而引起的能源需求增加,资源,污染物和二氧化碳排放量有限,需要更加有效和可持续的能源生产。由于其高电效率以及燃料和应用的灵活性,高温燃料电池具有巨大的潜力,可以满足未来能源供应的需求。然后必须通过重整或气化碳氢化合物来生成电化学上可转换的固态氧化物燃料电池(SOFC)的氢气和一氧化碳,或者在纯氢气的情况下,通过电解来生成氢气。对于增产过程,需要能量。这通常导致SOFC系统效率下降。在现有技术的组合方法中,重整或气化反应器和SOFC通常是分开的。吸热重整所需的热量是通过所供应燃料的部分氧化(POx)或通过利用废气余热而产生的。在当时的不伦瑞克工业大学热能和燃料技术研究所,开发了一种创新的平面SOFC烟囱设计,该设计具有间接内部重整功能且没有双极板。由于热和材料的耦合,SOFC废热可直接用于提供吸热重整过程。另外,主要由水蒸气组成的一部分热阳极废气作为重整剂再循环。因此,基于化学热泵的原理,根据所使用的燃料,即使SOFC本身仅达到大约50%的电效率,也可以实现60%以上的系统效率。另外,由于级联的SOFC结构导致较高的燃料利用率,因此不再需要废气的后燃烧。因为SOFC膜只允许氧离子流,因此代表了一个空气分离单元,并且SOFC设计没有阳极和阴极流的混合,所以可以通过将水蒸气从阳极废气中冷凝出来来实现简单的CO2分离。新开发的堆栈设计的另一个优势是其并行互连,这导致了有关单个堆栈级别的更高可靠性。当时的工作目的是首先确定用于天然气作为燃料的新烟囱设计的尺寸,并对其运行和可行性进行能效分析。通过开发仿真程序,证明了该概念的理论可行性和大约60%的高电气效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号