首页> 外文期刊>Journal of Fuel Cell Science and Technology >Monte Carlo Investigation of Particle Properties Affecting TPB Formation and Conductivity in Composite Solid Oxide Fuel Cell Electrode-Electrolyte Interfaces
【24h】

Monte Carlo Investigation of Particle Properties Affecting TPB Formation and Conductivity in Composite Solid Oxide Fuel Cell Electrode-Electrolyte Interfaces

机译:蒙特卡洛方法研究复合固体氧化物燃料电池电极-电解质界面中TPB形成和电导率的颗粒性质

获取原文
获取原文并翻译 | 示例
       

摘要

A previously developed microstructure model of a solid oxide fuel cell (SOFC) electrode-electrolyte interface has been applied to study the impacts of particle properties on these interfaces through the use of a Monte Carlo simulation method. Previous findings that have demonstrated the need to account for gaseous phase percolation have been confirmed through the current investigation. In particular, the effects of three-phase percolation critically affect the dependence of TPB formation and electrode conductivity on (1) conducting phase particle size distributions, (2) electronic:ionic conduction phase contrast, and (3) the amount of mixed electronic-ionic conductor (MEIC) included in the electrode. In particular, the role of differing percolation effectiveness between electronic and ionic phases has been shown to counteract and influence the role of the phase contrast. Porosity, however, has been found to not be a significant factor for active TPB formation in the range studied, but does not obviate the need for modeling the gas phase. In addition, the current work has investigated the inconsistencies in experimental literature results concerning the optimal particle size distribution. It has been found that utilizing smaller particles with a narrow size distribution is the preferable situation for electrode-electrolyte interface manufacturing. These findings stress the property-function relationships of fuel cell electrode materials.
机译:先前开发的固体氧化物燃料电池(SOFC)电极-电解质界面的微观结构模型已用于通过使用蒙特卡洛模拟方法研究颗粒性质对这些界面的影响。通过当前的研究已经证实了以前的发现,这些发现表明需要考虑气相渗透。特别是,三相渗流的影响严重影响了TPB形成和电极电导率对(1)导电相粒度分布,(2)电子:离子导电相差和(3)混合电子-电极中包含的离子导体(MEIC)。尤其是,已证明电子相和离子相之间不同的渗透效率具有抵消和影响相衬作用的作用。然而,在所研究的范围内,发现孔隙率不是形成活性TPB的重要因素,但并未消除对气相建模的需要。另外,当前的工作已经研究了关于最佳粒径分布的实验文献结果中的不一致之处。已经发现,利用具有窄尺寸分布的较小颗粒是电极-电解质界面制造的优选情况。这些发现强调了燃料电池电极材料的特性-功能关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号