...
首页> 外文期刊>Journal of Fourier Analysis and Applications >Hyperbolic Wavelets and Multiresolution in H2(mathbbT)H^{2}(mathbb{T})
【24h】

Hyperbolic Wavelets and Multiresolution in H2(mathbbT)H^{2}(mathbb{T})

机译:H 2 (mathbbT)H ^ {2}(mathbb {T})中的双曲小波和多分辨率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In signal processing and system identification for H2(BbbT)H^{2}(Bbb{T}) and H2(BbbD)H^{2}(Bbb{D}) the traditional trigonometric bases and trigonometric Fourier transform are replaced by the more efficient rational orthogonal bases like the discrete Laguerre, Kautz and Malmquist-Takenaka systems and the associated transforms. These bases are constructed from rational Blaschke functions, which form a group with respect to function composition that is isomorphic to the Blaschke group, respectively to the hyperbolic matrix group. Consequently, the background theory uses tools from non-commutative harmonic analysis over groups and the generalization of Fourier transform uses concepts from the theory of the voice transform. The successful application of rational orthogonal bases needs a priori knowledge of the poles of the transfer function that may cause a drawback of the method. In this paper we give a set of poles and using them we will generate a multiresolution in H2(BbbT)H^{2}(Bbb{T}) and H2(BbbD)H^{2}(Bbb{D}). The construction is an analogy with the discrete affine wavelets, and in fact is the discretization of the continuous voice transform generated by a representation of the Blaschke group over the space H2(BbbT)H^{2}(Bbb{T}). The constructed discretization scheme gives opportunity of practical realization of hyperbolic wavelet representation of signals belonging to H2(BbbT)H^{2}(Bbb{T}) and H2(BbbD)H^{2}(Bbb{D}) if we can measure their values on a given set of points inside the unit circle or on the unit circle. Convergence properties of the hyperbolic wavelet representation will be studied.
机译:在H 2 (BbbT)H ^ {2}(Bbb {T})和H 2 (BbbD)H ^ {2}(Bbb {D})用更有效的有理正交基代替了传统的三角基和三角傅立叶变换,例如离散的Laguerre,Kautz和Malmquist-Takenaka系统以及相关的变换。这些基础由有理Blaschke函数构造而成,这些函数相对于Blaschke组同构,相对于双曲矩阵组同构。因此,背景理论使用了来自非交换谐波分析的各种工具,而傅立叶变换的推广则使用了语音变换理论的概念。有理正交基的成功应用需要对传递函数的极点有先验知识,这可能会导致方法的缺陷。在本文中,我们给出了一组极点,并使用它们在H 2 (BbbT)H ^ {2}(Bbb {T})和H 2 (BbbD)H ^ {2}(Bbb {D})。该构造类似于离散仿射小波,并且实际上是在空间H 2 (BbbT)H ^ {2}上由Blaschke群表示产生的连续语音变换的离散化。 (Bbb {T})。构造的离散化方案为H 2 (BbbT)H ^ {2}(Bbb {T})和H 2 信号的双曲小波表示的实际实现提供了机会。 (BbbD)H ^ {2}(Bbb {D}),如果我们可以在单位圆内或单位圆上的一组给定点上测量其值。将研究双曲小波表示的收敛性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号