【24h】

Effects of Nanophase Materials (≤20 nm) on Biological Responses

机译:纳米材料(≤20nm)对生物响应的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Nanophase materials have enhanced properties (thermal, mechanical, electrical, surface reactivity, etc.) not found in bulk materials. Intuitively, the enhancement of material properties could occur when the materials encounter biological specimens. Previous investigations of biological interactions with nanometer-scale materials have been very limited. With the ability to manipulate atoms and molecules, we now can create predefined nanostructures with unprecedented precision. In parallel with this development, improved understanding of the biological effects of the nanophase materials, whatever those may be, should also deserve attention. In this study, we have applied precision aerosol technology to investigate cellular response to nanoparticles. We used synthetic nanoparticles generated by an electrospray technique to produce nanoparticles in the size range of 8–13 nm with practically monodispersed aerosol particles and approximately the same number concentration. We report here on the potency of nano-metal particles with single or binary chemical components in eliciting interleukin-8 (IL-8) production from epithelial cell lines. For single-component nanoparticles, we found that nano-Cu particles were more potent in IL-8 production than nano-Ni and nano-V particles. However, the kinetics of IL-8 production by these three nanoparticles was different, the nano-Ni being the highest among the three. When sulfuric acid was introduced to form acidified nano-Ni particles, we found that the potency of such binary-component nanoparticles in eliciting IL-8 production was increased markedly, by about six times. However, the acidified binary nano-Na and -Mg nanoparticles did not exhibit the same effects as binary nano-Ni particles did. Since Ni, a transition metal, could induce free radicals on cell surfaces, while Na and Mg could not, the acidity might have enhanced the oxidative stress caused by radicals to the cells, leading to markedly higher IL-8 production. This result indicates the complexity of biological responses to nanoparticles. We believe that the exposure methodology and aerosol technology employed in our research will provide an effective means to systematically investigate cellular responses to nanoparticles, structured or unstructured, in ongoing research projects. Different cell lines, chemicals, and particle morphology can also be investigated using such a methodology.
机译:纳米相材料具有散装材料中未发现的增强的性能(热,机械,电,表面反应性等)。凭直觉,当材料遇到生物样本时,材料性能可能会增强。先前与纳米级材料的生物相互作用的研究非常有限。有了操纵原子和分子的能力,我们现在可以以前所未有的精度创建预定义的纳米结构。与这一发展同时进行的是,对纳米相材料的生物学效应(无论可能是什么)的理解也应引起注意。在这项研究中,我们已应用精密气溶胶技术来研究细胞对纳米颗粒的反应。我们使用通过电喷雾技术生成的合成纳米粒子,生成尺寸范围为8–13 nm的纳米粒子,其中的纳米粒子实际上是单分散的气溶胶粒子,浓度近似相同。我们在这里报告具有单个或二进制化学成分的纳米金属粒子在诱导上皮细胞系产生白介素8(IL-8)方面的作用。对于单组分纳米颗粒,我们发现纳米铜颗粒在IL-8生产中比纳米镍和纳米V颗粒更有效。然而,这三种纳米粒子产生IL-8的动力学是不同的,纳米镍是这三种粒子中最高的。当引入硫酸以形成酸化的纳米镍颗粒时,我们发现这种二元组分纳米颗粒在诱导IL-8产生方面的效力显着提高了约六倍。但是,酸化的二元纳米Na和-Mg纳米颗粒没有显示出与二元纳米Ni颗粒相同的效果。由于过渡金属Ni可以诱导细胞表面的自由基,而Na和Mg则不能,因此酸性可能增强了自由基对细胞的氧化应激,从而导致IL-8的产量显着提高。该结果表明对纳米颗粒的生物学反应的复杂性。我们相信,在我们的研究中采用的暴露方法和气溶胶技术将为正在进行的研究项目提供系统地研究细胞对结构化或非结构化纳米颗粒的反应的有效手段。也可以使用这种方法研究不同的细胞系,化学物质和颗粒形态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号