...
首页> 外文期刊>Journal of Environmental Science and Health. A >Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil
【24h】

Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil

机译:厌氧,铁和硫酸盐还原细菌培养的特性及其在酸性矿山排水影响土壤的生物修复中的应用

获取原文
获取原文并翻译 | 示例

摘要

Development of an appropriate bioremediation strategy for acid mine drainage (AMD) impacted environment is imperative for sustainable mining but remained critically challenged due to the paucity of knowledge on desired microbiological factors and their nutrient requirements. The present study was conducted to utilize the potential of an anaerobic, acid-tolerant, Fe3+ and SO42- reducing microbial consortium for in situ remediation of highly acidic (pH 3.21), SO42- rich (6285 mg/L) mine drainage impacted soil (AIS). A microbial consortium enriched from AMD system and composed of Clostridiales and Bacillales members was characterized and tested for in situ application through microcosms. A combination of bioaugmentation (enriched consortium) and biostimulation (cellulose) allowed 97% reduction in dissolved sulfate and rise in pH up to 7.5. 16S rRNA gene-based amplicon sequencing confirmed that although the bioaugmented community could survive in AIS, availability of carbon source was necessary for superior iron- and sulfate- reduction. Quantitative PCR of dsrB gene confirmed the role of carbon source in boosting the SO42- reduction activities of sulfate reducers. This study demonstrated that native AIS harbored limited catabolic activities required for the remediation but addition of catabolically active microbial populations along with necessary carbon and energy source facilitate the bioremediation of AIS.
机译:对于酸性矿山排水(AMD)影响的环境,开发适当的生物修复策略对于可持续采矿是必不可少的,但由于对所需微生物因子及其养分需求的了解不足,因此仍然面临严峻挑战。进行本研究的目的是利用厌氧,耐酸,Fe3 +和SO42还原菌团的潜力来原位修复高酸性(pH 3.21),富含SO42(6285 mg / L)的矿山排水影响土壤( AIS)。鉴定了由AMD系统富集并由梭状芽孢杆菌和芽孢杆菌成员组成的微生物联盟,并通过微观世界对其进行了现场测试。生物强化(富集的财团)和生物刺激(纤维素)的结合使溶解的硫酸盐减少了97%,pH值上升到7.5。基于16S rRNA基因的扩增子测序证实,尽管生物增强群落可以在AIS中存活,但是碳源的可用性对于铁和硫酸盐的卓越还原是必需的。 dsrB基因的定量PCR证实了碳源在增强硫酸盐还原剂的SO42还原活性中的作用。这项研究表明,天然AIS具有修复所需的有限的分解代谢活性,但添加分解代谢活性的微生物种群以及必要的碳和能源有助于AIS的生物修复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号