...
首页> 外文期刊>Journal of engineering materials and technology >Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting
【24h】

Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting

机译:切削刀具的韧性延展性的证据以及对微切削中材料分离中消耗的能量进行建模的证据

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Orthogonal cutting experiments using a quick-stop device are performed on Al2024-T3 and OFHC copper to study the chip-workpiece interface in a scanning electron microscope. Evidence of ductile tearing ahead of the tool at cutting speeds of 150 m/min has been found. A numerical finite element model is then developed to study the energy consumed in material separation in micro-cutting. The ductile fracture of Al2024-T3 in a complex stress state ahead of the tool is captured using a damage model. Chip formation is simulated via the use of a sacrificial layer and sequential elemental deletion in this layer. Element deletion is enforced when the accumulated damage exceeds a predetermined value. A Johnson-Cook damage model that is load history dependent and with strain-to-fracture dependent on stress, strain rate, and temperature is used to model the damage. The finite element model is validated using the cutting forces obtained from orthogonal micro-cutting experiments. Simulations are performed over a range of uncut chip thickness values. It is found that at lower uncut chip thickness values, the percentage of energy expended in material separation is higher than at higher uncut chip thicknesses. This work highlights the importance of the energy associated with material separation in the nonlinear scaling effect of specific cutting energy in micro-cutting.
机译:在Al2024-T3和OFHC铜上进行了使用快速停止装置的正交切割实验,以在扫描电子显微镜中研究切屑与工件的界面。已经发现以150 m / min的切削速度在工具之前发生韧性撕裂。然后建立数值有限元模型,以研究微切削中材料分离所消耗的能量。使用损伤模型来捕获工具前处于复杂应力状态的Al2024-T3的韧性断裂。通过使用牺牲层和该层中的顺序元素删除来模拟芯片形成。当累积损坏超过预定值时,将强制执行元素删除。使用约翰逊库克(Johnson-Cook)损伤模型,该模型依赖于载荷历史记录,并且应变到断裂的应力取决于应力,应变率和温度,因此可以对损伤建模。使用从正交微切削实验获得的切削力验证了有限元模型。在未切屑厚度值范围内执行仿真。发现在较低的未切屑厚度值下,材料分离中消耗的能量百分比高于较高的未切屑厚度。这项工作强调了与材料分离相关的能量在微切削中特定切削能量的非线性缩放效应中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号