...
首页> 外文期刊>Journal of engineering materials and technology >Multiscale Material Modeling and Simulation of the Mechanical Behavior of Dual Phase Steels Under Different Strain Rates: Parametric Study and Optimization
【24h】

Multiscale Material Modeling and Simulation of the Mechanical Behavior of Dual Phase Steels Under Different Strain Rates: Parametric Study and Optimization

机译:不同应变速率下双相钢力学性能的多尺度材料建模与仿真:参数研究与优化

获取原文
获取原文并翻译 | 示例

摘要

Recent studies on developing dual phase (DP) steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties as well as optimizing microstructure design at different strain rate conditions. In this work, a microstructure-based approach using a multiscale material and structure model was developed. The approach examined the mechanical behavior of DP steels using virtual tensile tests with a full micro-macro multiscale material model to identify specific mechanical properties. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were also studied. The influence of these microscopic parameters at different strain rates on the mechanical properties of DP steels was examined numerically using a full micro-macro multiscale finite element method. An elasto-viscoplastic constitutive model and a response surface methodology (RSM) were used to determine the optimum microstructure parameters for a required combination of strength/ductility at different strain rates. The results from the numerical simulations were compared with experimental results found in the literature. The developed methodology proved to be a powerful tool for studying the effect and interaction of key strain rate sensitivity and microstructure parameters on mechanical behavior and thus can be used to identify optimum microstructural conditions at different strain rates.
机译:最近开发双相(DP)钢的研究表明,当改变显微组织中各相的体积分数和晶粒尺寸时,取决于显微组织的性能,强度/延展性的组合将得到显着改善。因此,DP钢制造商对预测微结构特性以及在不同应变率条件下优化微结构设计感兴趣。在这项工作中,开发了一种使用多尺度材料和结构模型的基于微观结构的方法。该方法使用虚拟拉伸试验和完整的微宏观多尺度材料模型检查了DP钢的机械性能,以确定特定的机械性能。还研究了DP钢中具有变化的铁素体晶粒尺寸,马氏体体积分数和碳含量的显微组织。这些微观参数在不同的应变速率下对DP钢的力学性能的影响使用完整的微宏多尺度有限元方法进行了数值检验。弹黏塑性本构模型和响应面方法(RSM)用于确定在不同应变率下强度/延展性所需组合的最佳微观结构参数。数值模拟的结果与文献中的实验结果进行了比较。事实证明,所开发的方法学是研究关键应变速率敏感性和微结构参数对机械行为的影响和相互作用的有力工具,因此可用于识别不同应变速率下的最佳微结构条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号