首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
【24h】

Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures

机译:燃气轮机压力下稀燃甲烷混合燃料的点火

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Shock-tube experiments and chemical kinetics modeling were performed to further understand the ignition and oxidation kinetics of lean methane-based fuel blends at gas turbine pressures. Such data are required because the likelihood of gas turbine engines operating on CH_4-based fuel blends with significant ( > 10%) amounts of hydrogen, ethane, and other hydrocarbons is very high. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH_4, CH_4/H_2, CH_4/C_2H_6, and CH_4/C_3H_8 in ratios ranging from 90/10% to 60/40%. Lean fuel/air equivalence ratios (φ=0.5) were utilized, and the test pressures ranged from 0.54 to 30.0 atm. The test temperatures were from 1090 K to 2001 K. Significant reductions in ignition delay time were seen with the fuel blends relative to the CH_4-only mixtures at all conditions. However, the temperature dependence (i.e., activation energy) of the ignition times was little affected by the additives for the range of mixtures and temperatures of this study. In general, the activation energy of ignition for all mixtures except the CH_4/C_3H_8 one was smaller at temperatures below approximately1300 K (~27 kcal/mol) than at temperatures above this value (~41 kcal/mol). A methane/hydrocarbon-oxidation chemical kinetics mechanism developed in a recent study was able to reproduce the high-pressure, fuel-lean data for the fuel/air mixtures. The results herein extend the ignition delay time database for lean methane blends to higher pressures (30 atm) and lower temperatures (1100 K) than considered previously and represent a major step toward understanding the oxidation chemistry of such mixtures at gas turbine pressures. Extrapolation of the results to gas turbine premixer conditions at temperatures less than 800 K should be avoided however because the temperature dependence of the ignition time may change dramatically from that obtained herein.
机译:进行了激波管实验和化学动力学建模,以进一步了解燃气轮机压力下稀甲烷气混合燃料的点火和氧化动力学。需要这样的数据是因为燃气涡轮发动机在含大量(> 10%)氢,乙烷和其他碳氢化合物的CH_4基燃料混合物上运行的可能性非常高。在由CH_4,CH_4 / H_2,CH_4 / C_2H_6和CH_4 / C_3H_8组成的混合燃料中,在反射冲击波之后获得了点火延迟时间,比例为90/10%到60/40%。使用了贫油/空气当量比(φ= 0.5),测试压力范围为0.54至30.0 atm。测试温度为1090 K至2001K。在所有条件下,相对于仅CH_4的混合物,燃油混合物的点火延迟时间均显着减少。但是,对于本研究的混合物范围和温度,点火时间的温度依赖性(即活化能)几乎不受添加剂的影响。通常,除CH_4 / C_3H_8混合物外,所有混合物的点火活化能在低于约1300 K(〜27 kcal / mol)的温度下均比在高于此值(〜41 kcal / mol)的温度下小。在最近的研究中开发的甲烷/碳氢化合物氧化化学动力学机制能够再现燃料/空气混合物的高压,贫燃料数据。本文的结果将稀甲烷混合气的点火延迟时间数据库扩展到比以前考虑的更高的压力(30 atm)和更低的温度(1100 K),并且代表了理解此类混合物在燃气轮机压力下的氧化化学的重要一步。但是,应避免将结果外推到低于800 K的温度下的燃气轮机预混合器条件,因为点火时间的温度依赖性可能会与此处获得的结果发生显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号