...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Acoustoelastic Interaction in Combustion Chambers: Modeling and Experiments
【24h】

Acoustoelastic Interaction in Combustion Chambers: Modeling and Experiments

机译:燃烧室中的声弹相互作用:建模和实验

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To decrease NO_x emissions from combustion systems, lean premixed combustion is used. A disadvantage is the higher sensitivity to combustion instabilities, leading to increased sound pressure levels in the combustor and resulting in an increased excitation of the surrounding structure: the liner. This causes fatigue, which limits the lifetime of the combustor. This paper presents a joint experimental and numerical investigation of this acoustoelastic interaction problem for frequencies up to 1 kHz. To study this problem experimentally, a test setup has been built consisting of a single burner, 500 kW, 5 bar combustion system. The thin structure (liner) is contained in a thick pressure vessel with optical access for a traversing laser vibrometer system to measure the vibration levels of the liner. The acoustic excitation of the liner is measured using pressure sensors measuring the acoustic pressures inside the combustion chamber. For the numerical model, the finite element method with full coupling between structural vibration and acoustics is used. The flame is modeled as an acoustic volume source corresponding to a heat release rate that is frequency independent. The temperature distribution is taken from a Reynolds averaged Navier Stokes (RaNS) computational fluid dynamics (CFD) simulation. Results show very good agreement between predicted and measured acoustic pressure levels. The predicted and measured vibration levels also match fairly well.
机译:为了减少燃烧系统的NO_x排放,使用了稀薄的预混燃烧。缺点是对燃烧不稳定性的敏感性更高,从而导致燃烧室中的声压级增加,并导致对周围结构(衬套)的激励增加。这会导致疲劳,从而限制燃烧器的使用寿命。本文针对频率高达1 kHz的声弹相互作用问题进行了联合实验和数值研究。为了通过实验研究此问题,已建立了一个测试装置,其中包括一个单燃烧器,500 kW,5 bar燃烧系统。薄的结构(衬里)包含在厚的压力容器中,该容器带有光学通道,用于行进激光振动计系统以测量衬套的振动水平。使用压力传感器测量衬套的声激发,压力传感器测量燃烧室内部的声压。对于数值模型,使用结构振动与声学之间完全耦合的有限元方法。火焰被建模为对应于与频率无关的放热率的声源。温度分布取自雷诺平均Navier Stokes(RaNS)计算流体动力学(CFD)模拟。结果表明,预测声压级和测量声压级之间有很好的一致性。预测和测量的振动水平也相当匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号