...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
【24h】

Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector

机译:柴油机喷油嘴的喷嘴流动和空化特性研究

获取原文
获取原文并翻译 | 示例

摘要

Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a computational investigation of the internal nozzle flow and cavitation characteristics in a diesel injector. A mixture based model in FLUENT V6.2 software is employed for simulations. In addition, a new criterion for cavitation inception based on the total stress is implemented, and its effectiveness in predicting cavitation is evaluated. Results indicate that under realistic diesel engine conditions, cavitation patterns inside the orifice are influenced by the new cavitation criterion. Simulations are validated using the available two-phase nozzle flow data and the rate of injection measurements at various injection pressures (800-1600 bar) from the present study. The computational model is then used to characterize the effects of important injector parameters on the internal nozzle flow and cavitation behavior, as well as on flow properties at the nozzle exit. The parameters include injection pressure, needle lift position, and fuel type. The propensity of cavitation for different on-fleet diesel fuels is compared with that for n-dodecane, a diesel fuel surrogate. Results indicate that the cavitation characteristics of n-dodecane are significantly different from those of the other three fuels investigated. The effect of needle movement on cavitation is investigated by performing simulations at different needle lift positions. Cavitation patterns are seen to shift dramatically as the needle lift position is changed during an injection event. The region of significant cavitation shifts from top of the orifice to bottom of the orifice as the needle position is changed from fully open (0.275 mm) to nearly closed (0.1 mm), and this behavior can be attributed to the effect of needle position on flow patterns upstream of the orifice. The results demonstrate the capability of the cavitation model to predict cavitating nozzle flows in realistic diesel injectors and provide boundary conditions, in terms of vapor fraction, velocity, and turbulence parameters at the nozzle exit, which can be coupled with the primary breakup simulation.
机译:柴油喷油器内的气蚀和湍流在一次喷雾分裂和形成过程中起着至关重要的作用。由于相关的两相流场是湍流且高度复杂,其特征在于大的压力梯度和小的孔口几何形状,因此在理论上和实验上,对实际喷射器中的气穴现象的研究都是具有挑战性的。我们在这里报告了柴油喷油器内部喷嘴流量和气蚀特性的计算研究。 FLUENT V6.2软件中基于混合物的模型用于仿真。此外,基于总应力的空化开始的新标准被实施,并评估了其预测空化的有效性。结果表明,在实际的柴油机条件下,节流孔内的空化模式受新的空化准则影响。使用现有的两相喷嘴流量数据以及本研究中的各种喷射压力(800-1600 bar)下的喷射速率进行了仿真验证。然后,使用该计算模型来表征重要的喷油器参数对内部喷嘴流动和气蚀行为以及喷嘴出口处流动特性的影响。这些参数包括喷射压力,针升位置和燃油类型。比较了各种机载柴油的气蚀倾向和柴油替代物正十二烷的气蚀倾向。结果表明,正十二烷的气蚀特性与其他三种研究的燃料明显不同。通过在不同的针升程位置执行模拟,研究了针运动对气穴的影响。在进样过程中,随着针提升位置的改变,气蚀模式会发生明显变化。当针位置从完全打开(0.275 mm)变为几乎关闭(0.1 mm)时,明显的气穴区域从孔的顶部向孔的底部转移,这种现象可归因于针位置对孔上游的流型。结果表明,空化模型能够预测实际柴油喷射器中的空化喷嘴流量,并提供边界条件,包括喷嘴出口处的蒸汽分数,速度和湍流参数,这些条件可以与主要破碎模拟相结合。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power 》 |2010年第4期| 042802.1-042802.12| 共12页
  • 作者单位

    Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022;

    Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022;

    Center for Transportation Research, Argonne National Laboratory, Argonne, IL 60439;

    Center for Transportation Research, Argonne National Laboratory, Argonne, IL 60439;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号