...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
【24h】

Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures

机译:天然气/氢气混合物在高压下的点火延迟时间和层流火焰速度计算

获取原文
获取原文并翻译 | 示例
           

摘要

Applications of natural gas and hydrogen co-firing have received increased attention in the gas turbine market, which aims at higher flexibility due to concerns over the availability of fuels. While much work has been done in the development of a fuels database and corresponding chemical kinetics mechanism for natural gas mixtures, there are nonetheless few if any data for mixtures with high levels of hydrogen at conditions of interest to gas turbines. The focus of the present paper is on gas turbine engines with primary and secondary reaction zones as represented in the Alstom and Rolls Royce product portfolio. The present effort includes a parametric study, a gas turbine model study, and turbulent flame speed predictions. Using a highly optimized chemical kinetics mechanism, ignition delay times and laminar burning velocities were calculated for fuels from pure methane to pure hydrogen and with natural gas/hydrogen mixtures. A wide range of engine-relevant conditions were studied: pressures from 1 to 30 atm, flame temperatures from 1600 to 2200 K, primary combustor inlet temperature from 300 to 900 K, and secondary combustor inlet temperatures from 900 to 1400 K. Hydrogen addition was found to increase the reactivity of hydrocarbon fuels at all conditions by increasing the laminar flame speed and decreasing the ignition delay time. Predictions of turbulent flame speeds from the laminar flame speeds show that hydrogen addition affects the reactivity more when turbulence is considered. This combined effort of industrial and university partners brings together the know-how of applied as well as experimental and theoretical disciplines.
机译:天然气和氢气混合燃烧的应用在燃气轮机市场上受到越来越多的关注,由于对燃料可用性的担忧,其目的是提高灵活性。尽管在开发燃料数据库和用于天然气混合物的相应化学动力学机制方面已经做了大量工作,但是在燃气轮机感兴趣的条件下,即使有关于高氢含量混合物的数据也很少。本文的重点是具有阿尔斯通和劳斯莱斯产品组合中所代表的具有一级和二级反应区的燃气轮机。目前的工作包括参数研究,燃气轮机模型研究和湍流火焰速度预测。使用高度优化的化学动力学机制,计算了从纯甲烷到纯氢以及天然气/氢气混合物的燃料的点火延迟时间和层流燃烧速度。研究了与发动机相关的各种条件:压力为1至30 atm,火焰温度为1600至2200 K,一次燃烧器入口温度为300至900 K,二次燃烧器入口温度为900至1400K。发现通过增加层流火焰速度和减少点火延迟时间,可以提高烃类燃料在所有条件下的反应性。由层流火焰速度预测的湍流火焰速度表明,当考虑湍流时,氢的添加对反应性的影响更大。工业界和大学合作伙伴的共同努力汇集了应用专业知识以及实验和理论学科。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号