首页> 外文期刊>Combustion and Flame >Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures
【24h】

Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures

机译:点火延迟时间,层流火焰速度以及高压下天然气/氢气混合物的机理验证

获取原文
获取原文并翻译 | 示例
           

摘要

New experimental ignition delay time data measured in both a shock tube and in a rapid compression machine were taken to determine the increase in reactivity due to the addition of hydrogen to mixtures of methane and natural gas. Test conditions were determined using a statistical design of experiments approach which allows the experimenter to probe a wide range of variable factors with a comparatively low number of experimental trials. Experiments were performed at 1,10, and 30 atm in the temperature range 850-1800 K, at equivalence ratios of 0.3,0.5, and 1.0 and with dilutions ranging from 72% to 90% by volume. Pure methane- and hydrogen-fueled mixtures were prepared in addition to two synthetic 'natural gas'-fueled mixtures comprising methane, ethane, propane, n-butane and n-pentane, one comprising 81.25/10/5/2.5/1.25% while the other consisted of 62.5/20/10/5/2.5% C_1/C_2/C_3/C_4/C_5 components to encompass a wide range of possible natural gas compositions. A heated, constant-volume combustion vessel was also utilized to experimentally determine laminar flame speed for the same baseline range of fuels. In this test, a parametric sweep of equivalence ratio, 0.7-1.3, was conducted at each condition, and the hydrogen content was varied from 50% to 90% by volume. The initial temperature and pressure varied from 300 to 450 K and 1 to 5 atm, respectively. Flame speed experiments conducted above atmospheric pressure utilized a 1:6 oxygen-to-helium ratio to curb the hydrodynamic and thermal instabilities that arise when conducting laminar flame speed experiments. All experiments were simulated using a detailed chemical kinetic model. Overall good agreement is observed between the simulations and the experimental results. A discussion of the important reactions promoting and inhibiting reactivity is included.
机译:取得了在减震管和快速压缩机中测得的新的实验点火延迟时间数据,以确定由于在甲烷和天然气的混合物中添加了氢而引起的反应性增加。使用实验方法的统计设计确定测试条件,该方法允许实验人员以相对较少的实验次数来探究各种可变因素。实验在850-1800 K的温度范围内以1,10和30 atm进行,当量比为0.3、0.5和1.0,稀释比例为体积的72%至90%。除了两种由甲烷,乙烷,丙烷,正丁烷和正戊烷合成的“天然气”燃料混合物外,还制备了纯甲烷和氢燃料混合物,其中一种混合物占81.25 / 10/5 / 2.5 / 1.25%,而另一种由62.5 / 20/10/5 / 2.5%的C_1 / C_2 / C_3 / C_4 / C_5成分组成,涵盖了各种可能的天然气成分。还使用加热的恒定体积的燃烧容器来实验确定相同基线范围的燃料的层流火焰速度。在该测试中,在每种条件下进行的当量比的参数扫描为0.7-1.3,并且氢含量从50%变为90%(体积)。初始温度和压力分别在300至450 K和1至5 atm之间变化。在高于大气压的条件下进行的火焰速度实验​​利用了1:6的氧氦比,以抑制进行层流火焰速度实验​​时出现的流体动力学和热不稳定性。使用详细的化学动力学模型模拟所有实验。在模拟和实验结果之间观察到总体良好的一致性。包括对促进和抑制反应性的重要反应的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号