首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Solid Element Rotordynamic Modeling of a Rotor on a Flexible Support Structure Utilizing Multiple-Input and Multiple-Output Support Transfer Functions
【24h】

Solid Element Rotordynamic Modeling of a Rotor on a Flexible Support Structure Utilizing Multiple-Input and Multiple-Output Support Transfer Functions

机译:利用多输入多输出支撑传递函数的柔性支撑结构上转子的固体元转子动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

The authors present an improved modeling approach to analyze the coupled rotor-support dynamics by modeling the rotor with solid finite elements (FEs) and utilizing multiple-input and multiple-output transfer functions (TFs) to represent the flexible support. A state-space model is then employed to perform general rotordynamic analyses. Transfer functions are used to simulate dynamic characteristics of the support structure, including cross-coupling between degrees-of-freedom. These TFs are derived by curve-fitting the frequency response functions of the support model at bearing locations. The impact of the polynomial degree of the TF on the response analysis is discussed, and a general rule is proposed to select an adequate polynomial degree. To validate the proposed approach, a comprehensive comparison between the complete solid FE rotor-support model (CSRSM) and the reduced state-space model (RSSM) is presented. Comparisons are made between natural frequencies, critical speeds, unbalance response, logarithmic decrement, and computation time. The results show that the RSSM provides a dynamically accurate approximation of the solid FE model in terms of rotordynamic analyses. Moreover, the computation time for the RSSM is reduced to less than 20% of the time required for the CSRSM. In addition, the modes up to 100,000 cpm are compared among the super-element, beam element, and RSSM. The results show that the RSSM is more accurate in predicting high-frequency modes than the other two approaches. Further, the proposed RSSM is useful for applications in vibration control and active magnetic bearing systems.
机译:作者提出了一种改进的建模方法,可通过使用实体有限元(FE)对转子进行建模并利用多输入和多输出传递函数(TF)来表示柔性支架来分析耦合的转子-支架动力学。然后采用状态空间模型来执行一般的转子动力学分析。传递函数用于模拟支撑结构的动态特性,包括自由度之间的交叉耦合。这些TF是通过在轴承位置对支撑模型的频率响应函数进行曲线拟合得出的。讨论了TF多项式对响应分析的影响,并提出了选择适当多项式的一般规则。为了验证所提出的方法,提出了完整的固体有限元转子支持模型(CSRSM)与简化状态空间模型(RSSM)之间的全面比较。在固有频率,临界速度,不平衡响应,对数递减和计算时间之间进行比较。结果表明,RSSM在转子动力学分析方面为固体有限元模型提供了动态准确的近似。而且,RSSM的计算时间减少到不到CSRSM所需时间的20%。此外,在超级元素,梁元素和RSSM之间比较了高达100,000 cpm的模式。结果表明,RSSM在预测高频模式方面比其他两种方法更准确。此外,提出的RSSM可用于振动控制和主动磁轴承系统中。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2017年第1期|012503.1-012503.11|共11页
  • 作者

    Lingnan Hu; Alan Palazzolo;

  • 作者单位

    Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843;

    Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号