首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Micro Gas Turbine Cycle Humidification for Increased Flexibility: Numerical and Experimental Validation of Different Steam Injection Models
【24h】

Micro Gas Turbine Cycle Humidification for Increased Flexibility: Numerical and Experimental Validation of Different Steam Injection Models

机译:微型燃气轮机循环加湿以提高灵活性:不同蒸汽注入模型的数值和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

With the current shift from centralized to more decentralized power production, new opportunities arise for small-scale combined heat and power (CHP) production units like micro gas turbines (mGTs). However, to fully embrace these opportunities, the current mGT technology has to become more flexible in terms of operation-decoupling the heat and power production in CHP mode- and in terms of fuel utilization-showing flexibility in the operation with different lower heating value (LHV) fuels. Cycle humidification, e.g., by performing steam injection, is a possible route to handle these problems. Current simulation models are able to correctly assess the impact of humidification on the cycle performance, but they fail to provide detailed information on the combustion process. To fully quantify the potential of cycle humidification, more advanced numerical model-spreferably validated-are necessary. These models are not only capable of correctly predicting the cycle performance, but they can also handle the complex chemical kinetics in the combustion chamber. In this paper, we compared and validated such a model with a typical steady-state model of the steam injected mGT cycle based on the Turbec T100. The advanced one is an in-house MATLAB model, based on the NIST database for the characterization of the properties of the gaseous compounds with the combustion mechanisms embedded according to the Gri-MEch 3.0 library. The validation one was constructed using commercial software (ASPEN PLUS), using the more advance Redlich-Kwong-Soave (RKS)-Boston-Mathias(BM) property method and assuming complete combustion by using a Gibbs reactor. Both models were compared considering steam injection in the compressor outlet or in the combustion chamber, focusing only on the global cycle performance. Simulation results of the steam injection cycle fueled with natural gas and syngas showed some differences between the two presented models (e.g., 5.9% on average for the efficiency increase over the simulated steam injection rates at nominal power output for injection in the compressor outlet); however, the general trends that could be observed are consistent. Additionally, the numerical results of the injection in the compressor outlet were also validated with steam-injection experiments in a Turbec T100, indicating that the advanced MATLAB model overestimates the efficiency improvement by 25-45%. The results show the potential of simulating the humidified cycle using more advanced models; however, in future work, special attention should be paid to the experimental tuning of the model parameters in general and the recuperator performance in particular to allow correct assessment of the cycle performance.
机译:随着当前从集中式发电向更加分散式发电的转变,小规模热电联产(CHP)生产单元(如微型燃气轮机(mGTs))出现了新的机遇。但是,要充分把握这些机遇,当前的mGT技术必须在操作上变得更加灵活-将CHP模式下的热能和动力产生分离-以及在燃料利用率方面表现出不同低热值的操作灵活性( LHV)燃料。循环加湿,例如通过进行蒸汽注入,是解决这些问题的可能途径。当前的模拟模型能够正确评估加湿对循环性能的影响,但是它们无法提供有关燃烧过程的详细信息。为了完全量化循环加湿的潜力,需要更高级的数值模型(最好是经过验证的模型)。这些模型不仅能够正确预测循环性能,而且还可以处理燃烧室中复杂的化学动力学。在本文中,我们将这种模型与基于Turbec T100的蒸汽喷射mGT循环的典型稳态模型进行了比较和验证。先进的是基于NIST数据库的内部MATLAB模型,用于表征气态化合物的特性,并根据Gri-MEch 3.0库嵌入了燃烧机理。验证之一是使用商业软件(ASPEN PLUS),更先进的Redlich-Kwong-Soave(RKS)-Boston-Mathias(BM)属性方法构造的,并假设使用Gibbs反应器完全燃烧。比较了两个模型,其中考虑了在压缩机出口或燃烧室中的蒸汽喷射,仅侧重于整体循环性能。以天然气和合成气为燃料的蒸汽喷射循环的仿真结果表明,这两种模型之间存在一些差异(例如,在标称功率输出下,在压缩机出口处喷射时,效率比模拟蒸汽喷射速率平均提高5.9%);但是,可以观察到的总体趋势是一致的。此外,还通过Turbec T100的蒸汽喷射实验验证了压缩机出口喷射的数值结果,表明先进的MATLAB模型高估了效率提高25-45%。结果表明,使用更高级的模型来模拟加湿循环的潜力;但是,在以后的工作中,应该特别注意一般对模型参数的实验调整,特别是换热器的性能,以便对循环性能进行正确的评估。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2019年第2期|021009.1-021009.10|共10页
  • 作者单位

    Univ Mons UMONS, Fac Engn, Thermal Engn & Combust Unit, Pl Parc 20, B-7000 Mons, Belgium;

    Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy;

    Vrije Univ Brussel VUB, Fac Engn, Thermo & Fluid Dynam FLOW, B-1050 Brussels, Belgium;

    Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy;

    Vrije Univ Brussel VUB, Thermo & Fluid Dynam FLOW, Fac Engn, Pl Laan 2, B-1050 Brussels, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号