首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Gas Turbine Fouling: A Comparison Among 100 Heavy-Duty Frames
【24h】

Gas Turbine Fouling: A Comparison Among 100 Heavy-Duty Frames

机译:燃气轮机结垢:100个重型机架之间的比较

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g., natural gas) have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum, or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature (TIT) of (1400-1500) degrees C, which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape, and clog the coolant passages. At the same time, land-based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency, and TIT with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on 100 gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of hightemperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.
机译:在最近的几十年中,传统燃气轮机燃料(例如天然气)的可变性和高成本促使操作者考虑使用低等级燃料来运行重型机架。在这种意义上,从煤炭,石油或生物质气化获得的合成燃料可能是有效的替代品。尽管这些替代方案与降低成本相匹配,并且在生物质资源的情况下,可能会带来二氧化碳排放的好处(减少二氧化碳的捕集和封存成本),但这些低等级燃料的污染物含量更高。合成燃料在燃烧器阶段之前被过滤,但是污染物并未完全去除。由于高温值,这一事实导致在喷嘴叶片上的大量沉积。除此之外,不断提高燃气轮机效率的需求决定了更高的燃烧器出口温度。当前的先进燃气涡轮发动机在(1400-1500)摄氏度的涡轮进口温度(TIT)下运行,该温度足够高,可以熔化由低级燃料引入的大部分污染物。颗粒沉积会增加表面粗糙度,改变翼型形状,并堵塞冷却液通道。同时,由于空气污染物能够通过过滤屏障,陆上动力装置会遭受压缩机污染。热段和压缩机结垢共同作用,以确定性能下降。本文提出了基于机器铭牌数据的热燃气轮机段污染物沉积分析。使用结垢敏感性标准估算热段和压缩机结垢。燃气轮机的净功率,效率和TIT与不同类型的合成燃料污染物的结合突出显示了每个燃气轮机如何进行颗粒沉积。根据结垢敏感性标准,对100台1.2 MW至420 MW燃气轮机上的颗粒沉积进行了模拟。通过使用基于TIT和污染物粘度估算的简化颗粒沉积计算,该分析表明污染物类型与燃气轮机性能之间的相关性如何发挥关键作用。结果允许根据燃料选择最佳的重型车架。低效率框架(以较低的TIT值为特征)显示出最佳的折衷方案,以减少在高温熔融污染物的存在下颗粒沉积的影响。当污染物由于其较低的燃料消耗而具有低熔点的特征时,高效率的框架是合适的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号