...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Modeling Reichardt's Formula for Eddy Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
【24h】

Modeling Reichardt's Formula for Eddy Viscosity in the Fluid Film of Tilting Pad Thrust Bearings

机译:倾斜垫推力轴承液膜中涡流粘度的Reichardt公式建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Oil-lubricated bearings are widely used in high-speed rotating machines such as those used in the aerospace and automotive industries that often require this type of lubrication. However, environmental issues and risk-adverse operations have made water lubricated bearings increasingly popular. Due to different viscosity properties between oil and water, the low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. The turbulence model is affected by eddy viscosity, while eddy viscosity depends on wall shear stress. Therefore, effective wall shear stress modeling is necessary in producing an accurate turbulence model. Improving the accuracy and efficiency of methodologies of modeling eddy viscosity in the turbulence model is important, especially considering the increasingly popular application of water-lubricated hearings and also the traditional oil-lubricated bearings in high-speed machinery. This purpose of this paper is to study the sensitivity of using different methodologies of solving eddy viscosity, for turbulence modeling. Eddy viscosity together with flow viscosity forms the effective viscosity, which is the coefficient of the shear stress in the film. The turbulence model and Reynolds equation are bound together to solve when hydrodynamic analysis is performed, therefore improving the accuracy of the turbulence model is also vital to improving a bearing model's ability to predict film pressure values, which will determine the velocity and velocity gradients in the film. The velocity gradients in the film are the other term determining the shear stress. In this paper, three approaches applying Reichardt's formula were used to model eddy viscosity in the fluid film. These methods are for determining where one wall's effects begin and the other wall's effects end. Trying to find a suitable model to capture the wall's effects of these bearings, with an aim to improve the accuracy of the turbulence model, would be of high value to the bearing industry. The results of this study could aid in improving future designs and models of both oil- and water-lubricated bearings.
机译:油润滑轴承广泛用于高速旋转机器,例如航空航天和汽车行业中经常需要这种类型润滑的轴承。然而,环境问题和风险规避的操作使得水润滑轴承越来越受欢迎。由于油和水之间的粘度特性不同,水的低粘度会急剧增加雷诺数,因此使水润滑轴承容易产生湍流效应。湍流模型受涡流粘度的影响,而涡流粘度取决于壁切应力。因此,有效的壁切应力建模对于产生精确的湍流模型是必要的。提高湍流模型中涡流粘度建模方法的准确性和效率非常重要,尤其是考虑到水润滑助听器以及传统的油润滑轴承在高速机械中日益普及的应用。本文的目的是研究湍流建模中采用不同方法求解涡流粘度的敏感性。涡流粘度与流动粘度一起形成有效粘度,该有效粘度是膜中剪切应力的系数。湍流模型和Reynolds方程绑定在一起以求解何时执行流体力学分析,因此,提高湍流模型的准确性对于提高轴承模型预测膜压力值的能力也至关重要,薄膜膜压力值将确定膜中压力和速度梯度。电影。薄膜中的速度梯度是决定剪切应力的另一个术语。在本文中,使用三种应用Reichardt公式的方法来模拟流体膜中的涡流粘度。这些方法用于确定一堵墙的效果在哪里开始而另一堵墙的效果在哪里结束。试图找到一个合适的模型来捕获这些轴承的壁面影响,以期提高湍流模型的准确性,这对轴承行业将具有很高的价值。这项研究的结果可能有助于改进油和水润滑轴承的未来设计和模型。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2018年第8期|082505.1-082505.9|共9页
  • 作者单位

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

    Univ Virginia, Rotating Machinery & Controls ROMAC Lab, Mech & Aerosp Engn, Charlottesville, VA 22904 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号