首页> 外文期刊>Journal of Energy Storage >Modeling of heat transfer and fluid flow in epsom salt (MgSO_4•H_2O) dissociation for thermochemical energy storage
【24h】

Modeling of heat transfer and fluid flow in epsom salt (MgSO_4•H_2O) dissociation for thermochemical energy storage

机译:EPSOM盐(MgSO_4•H_2O)离解热传热与流体流动的建模热化学储能

获取原文
获取原文并翻译 | 示例
       

摘要

For describing the thermochemical energy storage in salt hydrates, a model for dissociation of a salt hydrate is presented in this work. The model comprehensively integrates the attendant transport phenomena of the dissociation process, reaction kinetics and convection of the generated vapor. Local salt hydrate particle size and permeability variation in the system resulting from the dissociation reaction, heat transfer and flow of vapor in the evolving porous medium are accounted. The coupled governing equations of chemical reaction rate, mass, momentum and energy are solved by a finite volume-based numerical method. The model is validated with the benchmark numerical result available in literature. Using the model the thermochemical dissociation of epsom salt in a thermal storage system is simulated. The transient evolution of temperature, concentration and flow fields during the dissociation reaction is described. System's performance is quantified with the help of performance indicators such as sensible, chemical, total energy and effectiveness. For the first time, the role of vapor flow on the physical behavior of the thermochemical energy storage system is delineated. It is observed that the flow of water vapor significantly influences system's temperature distribution which in turn influences all other physical aspects, such as local and global heat transfer, reaction progression, concentration field and storage performance of the system.
机译:为了描述盐水合物中的热化学能量储存,在这项工作中提出了一种用于解离盐水合物的模型。该模型全面地整合了解离过程,反应动力学和产生的蒸汽对流的服务员传输现象。占据过解反应产生的系统中的局部盐水合物粒度和渗透性变化,占了不良多孔介质中的传热和蒸汽流动。通过基于有限体积的数值方法解决了化学反应速率,质量,动量和能量的耦合控制方程。该模型验证了文献中可用的基准数值结果。使用模型,模拟了换热储存系统中的EPSOM盐的热化学解离。描述了在解离反应过程中温度,浓度和流场的瞬态演变。系统的性能是在绩效指标的帮助下量化,例如明智,化学,总能量和有效性。首次,蒸汽流量对热化学能量存储系统的物理行为的作用被描绘。观察到水蒸气的流动显着影响系统的温度分布,这反过来影响所有其他物理方面,例如局部和全球传热,反应进展,浓度场和系统的储存性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号