首页> 外文期刊>Journal of Energy Resources Technology >Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
【24h】

Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle

机译:结合Goswami功率和冷却​​循环的朗肯循环的性能分析

获取原文
获取原文并翻译 | 示例
       

摘要

Improving the efficiency of thermodynamic cycles plays a fundamental role in reducing the cost of solar power plants. These plants work normally with Rankine cycles which present some disadvantages due to the thermodynamic behavior of steam at low pressures. These disadvantages can be reduced by introducing alternatives such as combined cycles which combine the best features of each cycle. In this paper, a combined Rankine-Goswami cycle (RGC) is proposed and a thermodynamic analysis is conducted. The Goswami cycle, used as a bottoming cycle, uses ammonia-water mixture as the working fluid and produces power and refrigeration while power is the primary goal. This bottoming cycle, reduces the energy losses in the traditional condenser and eliminates the high specific volume and poor vapor quality presented in the last stages of the lower pressure turbine in the Rankine cycle. In addition, the use of absorption condensation in the Goswami cycle, for regeneration of the strong solution, allows operating the low pressure side of the cycle above atmospheric pressure which eliminates the need for maintaining a vacuum pressure in the condenser. The performance of the proposed combined Rankine-Goswami cycle, under full load, was investigated for applications in parabolic trough solar thermal plants for a range from 40 to 50 MW sizes. A sensitivity analysis to study the effect of the ammonia concentration, condenser pressure, and rectifier concentration on the cycle efficiency, network, and cooling was performed. The results indicate that the proposed RGC provide a difference in net power output between 15.7% and 42.3% for condenser pressures between 1 and 9 bars. The maximum effective first law and exergy efficiencies for an ammonia mass fraction of 0.5 are calculated as 36.7% and 24.7%, respectively, for the base case (no superheater or rectifier process).
机译:提高热力循环效率在降低太阳能发电厂的成本中起着根本性的作用。这些设备通常以兰金循环运行,由于低压下蒸汽的热力学行为,它们存在一些缺点。这些缺点可以通过引入替代方案(例如结合了每个循环的最佳功能的组合循环)来减少。在本文中,提出了兰金-高斯瓦米循环(RGC)的组合,并进行了热力学分析。 Goswami循环用作底循环,使用氨水混合物作为工作流体,并产生动力和制冷,而动力是主要目标。该底部循环减少了传统冷凝器中的能量损失,并消除了兰金循环中低压涡轮最后阶段中出现的高比容和较差的蒸汽质量。此外,在Goswami循环中使用吸收冷凝来再生强溶液,可使循环的低压侧在大气压以上运行,从而无需在冷凝器中保持真空压力。拟议的兰金-高斯瓦米联合循环在满负荷下的性能已被研究用于抛物线槽式太阳能热电厂,功率范围为40至50 MW。进行了敏感性分析,以研究氨浓度,冷凝器压力和精馏器浓度对循环效率,网络和冷却的影响。结果表明,对于1至9 bar的冷凝器压力,建​​议的RGC可提供净功率输出的15.7%至42.3%的差异。对于基本情况(无过热器或精馏过程),氨质量分数为0.5时,最大有效第一定律和火用效率分别计算为36.7%和24.7%。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2012年第3期|p.032001.1-032001.8|共8页
  • 作者单位

    Clean Energy Research Center,University of South Florida,Tampa, FL 33620,Department of Mechanical Engineering,Universidad del Norte,Barranquilla, Colombia;

    Clean Energy Research Center,University of South Florida,Tampa, FL 33620,Department of Mechanical Engineering,Universidad Autonoma del Caribe,Barranquilla, Colombia;

    Clean Energy Research Center,University of South Florida,Tampa, FL;

    Clean Energy Research Center,University of South Florida,Tampa, FL;

    Clean Energy Research Center,University of South Florida,Tampa, FL;

    Clean Energy Research Center,University of South Florida,Tampa, FL;

    Department of Chemical and Biomedical Engineering, ENB 210, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cooling; power; ammonia-water mixture; low temperature cycle; bottoming cycle;

    机译:冷却;功率;氨水混合物;低温循环;触底周期;
  • 入库时间 2022-08-18 00:29:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号