首页> 外文期刊>Journal of Energy Resources Technology >Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
【24h】

Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations

机译:天然裂缝性超致密地层水力压裂开发复杂裂缝网络的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and hot-dry-rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in biwing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial discrete fracture network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulations suggest that stress state, in situ fracture networks, and fluid type are the main parameters influencing hydraulic fracture network development. Major factors leading to more complex fracture networks are an extensive pre-existing natural fracture network, small fracture spacings, low differences between the principle stresses, well contained formations, high tensile strength, high Young's modulus, low viscosity fracturing fluid, and large fluid volumes. The differences between 5 km deep granitic HDR and 2.5 km deep shale gas stimulations are the following: (1) the reservoir temperature in granites is higher, (2) the pressures and stresses in granites are higher, (3) surface treatment pressures in granites are higher, (4) the fluid leak-off in granites is less, and (5) the mechanical parameters tensile strength and Young's modulus of granites are usually higher than those of shales.
机译:必须通过水力压裂法创建大型复杂的裂缝网络,以提高从致密砂岩或页岩储层中的采收率,致密气开采和热干岩(HDR)地热系统以改善与岩石基质的接触面积。尽管常规的压裂处理可能导致裂缝破裂,但通过微地震测绘的证据表明,在许多非常规油藏中都可以形成裂缝网络,尤其是当存在天然裂缝系统且主应力之间的差异较小时。但是,关于天然裂缝致密地层中的裂缝发展以及流体和支撑剂的输送,没有获得太多的见识。为了阐明岩石与处理参数之间的关系以及由此产生的裂缝特性,使用了商用离散裂缝网络(DFN)模拟器进行了数值模拟。进行了全面的敏感性分析,以确定在不同地质条件下大规模水压裂处理产生的典型裂缝网络模式。它显示了治疗参数如何影响裂缝的发展以及不同的治疗设计可能导致什么类型的裂缝模式。这项研究的重点是在不同天然裂缝系统中复杂的裂缝网络的发展。另外,严格讨论了DFN模拟器对页岩气增产和HDR增产建模的适用性。上述方法可以深入了解岩石性质(特别是基质性质和天然裂缝系统的特征)与发达裂缝网络的性质之间的关系。各种模拟场景显示了可以开发出不同复杂裂缝模式的典型条件,并规定了有效的处理设计以生成这些裂缝系统。水力刺激对于从页岩和基底岩石(主要是花岗岩)等超致密地层生产石油,天然气或热量至关重要。如果存在天然裂缝系统,则压裂过程的模拟将变得更加复杂。我们的模拟表明,应力状态,原位裂缝网络和流体类型是影响水力裂缝网络发展的主要参数。导致更复杂的裂缝网络的主要因素是广泛存在的天然裂缝网络,裂缝间距小,主应力之间的差异小,地层完好,抗张强度高,杨氏模量高,低粘度压裂液和大量流体。 5 km深的花岗岩HDR和2.5 km深的页岩气增产措施之间的差异如下:(1)花岗岩中的储层温度较高,(2)花岗岩中的压力和应力较高,(3)花岗岩中的表面处理压力较高,(4)花岗岩中的流体泄漏较少,(5)花岗岩的机械参数抗张强度和杨氏模量通常高于页岩。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2014年第4期|042905.1-042905.9|共9页
  • 作者单位

    Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada;

    Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering University of Alberta, Edmonton, AB T6G 2W2, Canada;

    Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam 14473, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:28:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号