首页> 外文期刊>Journal of Petroleum Science & Engineering >Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model
【24h】

Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model

机译:粘性区模型自然裂缝形成中液压断裂繁殖的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents an integrated methodology that utilizes the cohesive zone model (CZM) to simulate propagation of hydraulic fractures, and their interactions with pre-existing natural fractures. CZM has the advantage of capturing the non-elastic behavior of shales; usually induced by total organic carbon (TOC) as well as dissimilar mechanical properties of cemented natural fractures. At the intersection of an advancing hydraulic fracture and a stationary natural fracture, the hydraulic fracture may arrest, cross, or divert into a pre-existing natural fracture depending on the rock mechanical properties, magnitude and direction of rock principal stresses, and fracture intersection angle. The activation of natural fractures during hydraulic fracture treatments improves fracture complexity and expands reservoir drainage area, making stimulation treatments more effective. In this work, triaxiality effects are incorporated into the cohesive zone model. Utilizing triaxiality makes the traction separation law (TSL) tied to confining pressure and this ensures a more reliable transition from laboratory test environment to bottomhole conditions. We present a methodology to determine the cohesive properties or TSL characteristics of rock, after performing semicircular bending tests (SCBT). Finite element analysis (FEA) is then used to calibrate the cohesive properties of both rock and natural fractures. The calibrated parameters were utilized in a field-scale FEA to simulate the growth of complex fracture networks. The results show how fracture intersection angle and the nature of cemented materials inside the natural fractures might divert a hydraulic fracture initially propagating in a direction perpendicular to the minimum horizontal stress. The sensitivity analysis of primary parameters such as fluid viscosity, natural fracture distribution, fracture intersection angle, and differential stresses is implemented to provide a better insight into the performance of hydraulic fracturing jobs in naturally fractured reservoirs. Results indicate the importance of nonlinear fracture tip effects as in-situ stress differences increase.
机译:本文介绍了一种综合方法,利用凝聚区模型(CZM)来模拟液压骨折的传播,以及它们与预先存在的自然骨折的相互作用。 CZM具有捕获Shales非弹性行为的优势;通常由总有机碳(TOC)诱导,以及粘合的天然骨折的不同机械性能。在推进液压骨折和固定自然骨折的交叉点,液压骨折可以根据岩石机械性能,岩石主应力的大小和方向捕集,交叉或转移到预先存在的自然骨折中,以及裂缝交叉角。液压断裂处理期间的自然骨折的激活改善了骨折复杂性并扩大了储层排水区,使刺激处理更有效。在这项工作中,三轴性效应纳入粘性区模型。利用三轴性使得牵引分离法(TSL)与限制压力相关,这确保了从实验室测试环境到井底条件的更可靠的过渡。我们提出了一种方法来确定岩石的粘性性质或TSL特性,在进行半圆形弯曲试验后(SCBT)。然后使用有限元分析(FEA)来校准岩石和自然骨折的内聚性能。校准参数用于场尺度FEA,以模拟复杂骨折网络的生长。结果表明,自然骨折内部粘合材料的骨折交叉角和性质如何转移液压断裂,最初在垂直于最小水平应力的方向上传播。实施诸如流体粘度,自然断裂分布,裂缝交叉角和差分应力的初级参数的敏感性分析,以更好地了解在天然裂缝储层中液压压裂工作的性能。结果表明非线性断裂尖端效应的重要性,因为原位应力差异增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号