...
首页> 外文期刊>Journal of Energy Engineering >Electrolyte Pumping Optimization in Already Manufactured Vanadium Redox Battery Based on Experimentally Determined Electrical and Hydrodynamic Losses
【24h】

Electrolyte Pumping Optimization in Already Manufactured Vanadium Redox Battery Based on Experimentally Determined Electrical and Hydrodynamic Losses

机译:基于实验确定的电和水动力损失的已制造钒氧化还原电池的电解液泵送优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Herein is presented an optimization of electrolyte pumping systems in industrial vanadium redox flow batteries (VRBs). The main advantages of the VRB relate to its prolonged service life, outstanding dynamic response, and flexible controllability during charge/discharge processes. In spite of their exceptional electrical parameters, VRBs suffer from significant energy requirements in the hydraulic pumping system needed for circulation of electrolyte from external tanks to battery cells. The industrial VRB equipped for this purpose with centrifugal driven by controllable electric motors hydraulic pumps were made from plastic components and able to work in the aggressive acid electrolyte. Electrolyte flow is carried out through the entire hydraulic system and battery cells containing carbon electrodes and providing electrochemical reduction-oxidation reactions of vanadium ions. Currently, electrodes in the VRB are made from carbon felt material because its porous structure possesses high specific surfaces which provide more reaction sites for the electrochemical reaction and thus a sufficient current (power). In spite of the significant electrode surface area, intensive electrolyte flow is required for eliminating effects of concentrated polarization of inactive vanadium ions in the vicinity of the electrodes' surface causing a diminution of battery output power. However, carbon felt has significant hydrodynamic resistance, diminishing the overall efficiency of VRBs. This disadvantage could be significantly decreased by the correct selection (optimization) of electrolyte flow rate using as a criterion, a minimum energy surplus comprising hydrodynamic and electrical losses. In the already manufactured VRB, such optimization could be done by the appropriate control of the electrical motors driving electrolyte pumps. However, manufacturers do not inform end-users regarding all main battery components, and partly it looks as an aggregate is assembled from black-boxes. Therefore, this optimization problem seems a rather challenging task requiring a special approach. The present paper proposes an optimization of the available VRB hydraulic system including build-in centrifugal pumps and driving electrical motors based on experimentally determined battery internal electrical resistance and hydraulic losses. The purpose of this optimization is to obtain maximum VRB efficiency. (C) 2016 American Society of Civil Engineers.
机译:本文介绍了工业钒氧化还原液流电池(VRB)中电解质泵送系统的优化。 VRB的主要优势在于其使用寿命长,出色的动态响应以及在充电/放电过程中的可控性。尽管VRB具有出色的电气参数,但它们在液压泵系统中仍然需要大量能量,以使电解液从外部储罐循环到电池单元。为此目的而配备的离心式工业VRB由可控电动机液压泵驱动,由塑料部件制成,能够在腐蚀性酸性电解液中工作。电解质流通过整个液压系统和包含碳电极并提供钒离子的电化学还原-氧化反应的电池进行。当前,VRB中的电极由碳毡材料制成,因为其多孔结构具有高的比表面,该比表面为电化学反应提供了更多的反应部位,从而提供了足够的电流(功率)。尽管电极表面积很大,但仍需要大量电解液来消除电极表面附近无活性钒离子的集中极化效应,从而导致电池输出功率减小。但是,碳毡具有显着的流体动力学阻力,从而降低了VRB的整体效率。通过正确选择(优化)电解质流速(包括流体动力损失和电损失在内的最小能量盈余),可以大大减少这一缺点。在已经制造的VRB中,可以通过适当控制驱动电解质泵的电动机来实现这种优化。但是,制造商不会将所有主要电池组件都告知最终用户,并且部分看起来是由黑匣子组装而成的。因此,此优化问题似乎是一项需要特殊方法的具有挑战性的任务。本文基于实验确定的电池内部电阻和液压损失,提出了对可用VRB液压系统的优化,包括内置离心泵和驱动电动机。此优化的目的是获得最大的VRB效率。 (C)2016年美国土木工程师学会。

著录项

  • 来源
    《Journal of Energy Engineering》 |2017年第2期|04016050.1-04016050.12|共12页
  • 作者单位

    Ariel Univ, Dept Elect Elect Engn, IL-40700 Ariel, Israel|Ben Gurion Univ Negev, Dept Solar Energy & Environm Phys, IL-84990 Beer Sheva, Israel;

    Ben Gurion Univ Negev, Dept Energy Engn, IL-84105 Beer Sheva, Israel;

    Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号