首页> 外文期刊>Journal of power sources >Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte
【24h】

Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte

机译:通过优化电解质的浓度,改善了基于硫酸盐-氯化物混合酸的钒氧化还原液流电池的宽温度适应性和能量密度

获取原文
获取原文并翻译 | 示例
           

摘要

In order to improve the energy density and broad temperature adaptability of vanadium redox flow battery based on sulfate-chloride mixed acid electrolyte, the stability and charge/discharging behavior of electrolytes at a broad temperature range (.20-50 degrees C) are investigated systematically. The static stability tests of vanadium ions show that the 2.4 M vanadium concentration can keep stable for 10 days with the electrolyte composition of chloride ion concentration is 6.0-7.0 M and sulfate concentration is 2.0-3.0 M. However, the static stability tests of chloride ions indicate that volatilization of hydrogen chloride can be avoided when chloride ion concentration is not exceeding 6.4 M. The cell performance of vanadium redox flow battery with optimized electrolyte compositions indicates that the sulfate-chloride mixed acid electrolyte can operate at a wider temperature range and the charge cut-off voltage must be less than 1.7 V to prevent the chlorine evolution. This work not only systematically optimizes the composition of mixed acid electrolyte, but also provides theoretical direction to the engineering application of vanadium redox flow battery at extreme environment.
机译:为了提高基于硫酸盐-氯化物混合酸电解液的钒氧化还原液流电池的能量密度和宽广的温度适应性,系统地研究了宽温度范围(.20-50摄氏度)下电解液的稳定性和充放电行为。 。钒离子的静态稳定性测试表明,在氯离子浓度为6.0-7.0 M,硫酸盐浓度为2.0-3.0 M的电解质组成下,2.4 M钒浓度可以保持稳定10天。但是,氯离子的静态稳定性测试离子表示当氯离子浓度不超过6.4 M时可以避免氯化氢的挥发。具有优化电解质组成的钒氧化还原液流电池的电池性能表明,硫酸盐-氯化物混合酸电解质可以在更宽的温度范围内运行,并且电荷截止电压必须小于1.7 V,以防止产生氯气。这项工作不仅系统地优化了混合酸电解质的组成,而且为钒氧化还原液流电池在极端环境下的工程应用提供了理论指导。

著录项

  • 来源
    《Journal of power sources》 |2019年第1期|62-68|共7页
  • 作者单位

    Wuhan Univ Sci & Technol, Sch Resource & Environm Engn, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, State Environm Protect Key Lab Mineral Met Resour, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Collaborat Innovat Ctr High Efficient Utili, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Prov Engn Technol Res Ctr, High Efficient Cleaning Utilizat Shale Vanadium R, Wuhan 430081, Hubei, Peoples R China;

    Wuhan Univ Sci & Technol, Sch Resource & Environm Engn, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, State Environm Protect Key Lab Mineral Met Resour, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Collaborat Innovat Ctr High Efficient Utili, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Prov Engn Technol Res Ctr, High Efficient Cleaning Utilizat Shale Vanadium R, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Hubei, Peoples R China;

    Wuhan Univ Sci & Technol, Sch Resource & Environm Engn, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, State Environm Protect Key Lab Mineral Met Resour, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Collaborat Innovat Ctr High Efficient Utili, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Prov Engn Technol Res Ctr, High Efficient Cleaning Utilizat Shale Vanadium R, Wuhan 430081, Hubei, Peoples R China;

    Wuhan Univ Sci & Technol, Sch Resource & Environm Engn, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, State Environm Protect Key Lab Mineral Met Resour, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Collaborat Innovat Ctr High Efficient Utili, Wuhan 430081, Hubei, Peoples R China|Wuhan Univ Sci & Technol, Hubei Prov Engn Technol Res Ctr, High Efficient Cleaning Utilizat Shale Vanadium R, Wuhan 430081, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vanadium redox flow battery; Sulfate-chloride mixed acid electrolyte; Concentration optimization; Temperature adaptability;

    机译:钒氧化还原液流电池;硫酸盐-氯化物混合酸电解液;浓度优化;温度适应性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号