首页> 外文期刊>Journal of dairy science >Breeding for reduced methane emission and feed-efficient Holstein cows: An international response
【24h】

Breeding for reduced methane emission and feed-efficient Holstein cows: An international response

机译:降低甲烷排放和饲料效率荷斯坦奶牛的育种:国际反应

获取原文
获取原文并翻译 | 示例
       

摘要

Selecting for lower methane (CH_4) emitting animalsis one of the best approaches to reduce CH_4 given thatgenetic progress is permanent and cumulative over generations.As genetic selection requires a large number ofanimals with records and few countries actively recordCH_4, combining data from different countries couldhelp to expedite accurate genetic parameters for CH_4traits and build a future genomic reference population.Additionally, if we want to include CH_4 in the breedinggoal, it is important to know the genetic correlationsof CH_4 traits with other economically important traits.Therefore, the aim of this study was first to estimategenetic parameters of 7 suggested methane traits, aswell as genetic correlations between methane traits andproduction, maintenance, and efficiency traits using amulticountry database. The second aim was to estimategenetic correlations within parities and stages oflactation for CH_4. The third aim was to evaluate theexpected response of economically important traits byincluding CH_4 traits in the breeding goal. A total of15,320 methane production (MeP, g/d) records from2,990 cows belonging to 4 countries (Canada, Australia,Switzerland, and Denmark) were analyzed. Records ondry matter intake (DMI), body weight (BW), bodycondition score, and milk yield (MY) were also available.Additional traits such as methane yield (MeY;g/kg DMI), methane intensity (MeI; g/kg energy-correctedmilk), a genetic standardized methane production,and 3 definitions of residual methane production(g/d), residual feed intake, metabolic BW (MBW),BW change, and energy-corrected milk were calculated.The estimated heritability of MeP was 0.21, whereasheritability estimates for MeY and MeI were 0.30 and0.38, and for the residual methane traits heritabilityranged from 0.13 to 0.16. Genetic correlations betweendifferent methane traits were moderate to high (0.41to 0.97). Genetic correlations between MeP and economicallyimportant traits ranged from 0.29 (MY) to0.65 (BW and MBW), being 0.41 for DMI. Selectionindex calculations showed that residual methane hadthe most potential for inclusion in the breeding goalwhen compared with MeP, MeY, and MeI, as residualmethane allows for selection of low methane emittinganimals without compromising other economically importanttraits. Inclusion of residual feed intake in thebreeding goal could further reduce methane, as the correlationwith residual methane is moderate and elicitsa favorable correlated response. Adding a negative economicvalue for methane could facilitate a substantialreduction in methane emissions while maintaining anincrease in milk production.
机译:选择下甲烷(CH_4)发射动物是减少CH_4的最佳方法之一遗传进展是永久性和累积的几代人。随着遗传选择需要大量的有记录和少数国家的动物积极记录CH_4,将来自不同国家的数据组合起来可以帮助加快CH_4的准确遗传参数特质并建立未来的基因组参考人口。此外,如果我们希望在繁殖中包含CH_4目标,了解遗传相关性是很重要的CH_4具有其他经济上重要特征的特征。因此,本研究的目的是估计7显示甲烷特征的遗传参数,如以及甲烷特征与遗传相关性的遗传相关性使用a的生产,维护和效率性状Multicountry数据库。第二个目的是估计遗传相关性与阶段内CH_4的哺乳。第三个目的是评估预期对经济上重要特征的响应包括育种目标中的CH_4特征。总共15,320甲烷生产(MEP,G / D)记录2,990个属于4个国家的奶牛(加拿大,澳大利亚,瑞士和丹麦分析了。记录干物质摄入(DMI),体重(BW),体条件得分,也可提供牛奶产量(我的)。诸如甲烷产量(Mey;G / kg DMI),甲烷强度(MEI; G / KG能量校正牛奶),遗传标准化甲烷生产,和3种残留甲烷生产的定义(g / d),残留饲料摄入,代谢BW(MBW),计算BW变化和能量矫正牛奶。估计MEP的遗传性为0.21,而Mey和Mei的遗传性估计为0.300.38,以及残留的甲烷特征可遗传性范围从0.13到0.16。遗传相关性不同的甲烷特征中等至高(0.41到0.97)。 MEP与经济学之间的遗传相关性重要的特质范围从0.29(我)到0.65(BW和MBW),为DMI为0.41。选择指数计算显示残留的甲烷有包含在育种目标中的最潜力与MEP,Mey和Mei相比,作为剩余甲烷允许选择低甲烷发光动物而不妥协其他经济上重要的特质。包含残留的进料摄入量育种目标可以进一步减少甲烷,作为相关性残留的甲烷中等和引发有利的相关反应。增加负面的经济甲烷的价值可以促进大量保持甲烷排放的同时保持甲烷排放量牛奶生产增加。

著录项

  • 来源
    《Journal of dairy science》 |2021年第8期|8983-9001|共19页
  • 作者单位

    Center for Quantitative Genetics and Genomics Aarhus University PO Box 50 DK-8830 Tjele Denmark;

    Center for Quantitative Genetics and Genomics Aarhus University PO Box 50 DK-8830 Tjele Denmark;

    Center for Quantitative Genetics and Genomics Aarhus University PO Box 50 DK-8830 Tjele Denmark;

    Center for Quantitative Genetics and Genomics Aarhus University PO Box 50 DK-8830 Tjele Denmark;

    Agriculture Victoria AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia School of Applied Systems Biology La Trobe University Bundoora Victoria 3083 Australia;

    Centre for Genomic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph ON N1G 2W1 Canada;

    Qualitas AG 6300 Zug Switzerland;

    Centre for Genomic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph ON N1G 2W1 Canada;

    Centre for Genomic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph ON N1G 2W1 Canada;

    Centre for Agricultural Innovation School of Agriculture and Food Faculty of Veterinary and Agricultural Sciences The University of Melbourne Victoria 3083 Australia Agriculture Victoria Research Ellinbank Victoria 3820 Australia;

    Agriculture Victoria Research Ellinbank Victoria 3820 Australia;

    Agriculture Victoria AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia School of Applied Systems Biology La Trobe University Bundoora Victoria 3083 Australia;

    Faculty of Agricultural Life and Environmental Science Agriculture Food and Nutrition Sciences Department University of Alberta Edmonton AB T6G 2C8 Canada;

    Viking Genetics Ebeltoftvej 16 Assenstoft 8960 Randers Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    methane production; residual methane; methane yield; feed efficiency;

    机译:甲烷生产;残留的甲烷;甲烷产量;饲料效率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号